Adaptive Boosting (AdaBoost)

William Wei National Center for Supercomputing Applications Department of Physics University of Illinois at Urbana-Champaign

General setting of the classification problem

Original source: http://yann.lecun.com/exdb/mnist/

Original source: ImageNet

https://www.semanticscholar.org/paper/ImageNet%3A-A-large-scale-hierarchicalimage-database-Deng-Dong/38211dc39e41273c0007889202c69f841e02248a

General setting of the classification problem

- Observation $\{X_i\}_{i=1}^N$
- Hidden parameters (labels) $\{Y_i\}_{i=1}^N$
- Assume (X, Y) follows some fixed but unknown probability distribution f_{XY}
- Need to find a function $g: X \to Y$ (deterministic) or $g: X \to \Delta_Y$ (probabilistic)

such that $L(g) = \mathbb{E}[C(g(X), f_{Y|X}(\cdot | X))]$ is minimizer given certain cost function C

- Optimal classifier: $g^* = f_{Y|X}(Y|X)$
- Since f_{XY} is unknown, need to approximate it.

Original source: http://yann.lecun.com/exdb/mnist/

General setting of the classification problem

- Consider a function class $\mathcal{G}_{\mathcal{W}}$ parameterized by $\mathcal{W} \in \mathbb{R}^n$
- Given a sequence of $\{X_i, Y_i\}_{i=1}^N$

$$\hat{W} = \arg\min_{W} \frac{\sum_{i=1}^{N} C(g_{W}(X_{i}), Y_{i}, W)}{N}$$

• If $g_{\hat{W}} \approx f_{Y|X}(\cdot | X)$, we say the model generalize well.

Weighted linear combination of classifiers

For fixed base classifiers, $g_i(\cdot)$, i = 1, ..., N, for binary classification, we can consider the following form,

$$g_w(\cdot) = sgn\left(\sum_{i=1}^N w_i g_i(\cdot)\right)$$

Need a strategy to combine base classifiers.

AdaBoost of Freund and Schapire (binary classification)

Let $\mathscr{G} = \{g_i\}_{i=1}^N$ be a fixed set of weak classifiers, and, $\{Z_i\}_{i=1}^n$ where, $Z_i = (X_i, Y_i)$, is the training set. $X_i \in \mathbb{R}^n$ $Y_i \in \{-1, +1\}$

1

The AdaBoost algorithm works iteratively as follows:

• Initialize
$$w^{(1)} = \left(w_1^{(1)}, \dots, w_n^{(1)}\right)$$
, with $w_i^{(1)} = \frac{1}{n}$

- At each iteration k = 1,...,K:
- 1. Let $g_k \in \mathscr{G}$ be any weak learner that minimizes the weighted empirical error, $e_k(g) := \sum_{i=1}^n w_i^{(k)} \mathbf{1}_{Y_i \neq g(X_i)}$

The AdaBoost algorithm works iteratively as follows:

• Initialize
$$w^{(1)} = \left(w_1^{(1)}, \dots, w_n^{(1)}\right)$$
, with $w_i^{(1)} = \frac{1}{n}$

At each iteration k = 1,...,K:

1. Let $g_k \in \mathscr{G}$ be any weak learner that minimizes the weighted empirical error, $e_k(g) := \sum_{i=1}^n w_i^{(k)} \mathbf{1}_{Y_i \neq g(X_i)}$ 2. $w_i^{(k+1)} = \frac{w_i^{(k)} \exp(-\alpha_k Y_i g_k(X_i))}{\mathscr{Z}_k}$, where $\alpha_k = \frac{1}{2} \log \frac{1 - e_k}{e_k}$

 $\hat{f}_n(x) := \frac{\sum_{i=1}^K \alpha_k g_k(x)}{\sum_{k=1}^K \alpha_k}$

And,
$$\mathscr{Z}_k = \sum_{i=1}^n w_i^{(k)} \exp(-\alpha_k Y_i g_k(X_i))$$

n

• After K iterations, output