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Error-correcting codes

http://www.computer-questions.com/what-to-do-when-error-code-8003-happens/



Society needs to communicate over 
noisy communication channels

https://www.nasa.gov/sites/default/files/tdrs_relay.jpg

https://en.wikipedia.org/wiki/Cell_site

http://www.diffen.com/difference/Modem_vs_Router

https://en.wikipedia.org/wiki/Hard_disk_drive



Noisy bits

We will visualize noise in data through random 
flipping of pixels in a black and white image.

𝑓 = probability of flipping a bit from 0 to 1 or vice versa

1 − 𝑓 = probability of a bit staying the same



Noisy channel coding

To minimize the noise picked up by source data 𝒔 as it passes 
through a noisy channel, we can convert the data into a redundant  
signal 𝒕. 



Example: Repetition codes

The simplest encoding one can think of is repetition 
coding 𝑅𝑛: repeat each bit 𝑛 times.

0101 →𝑅5 00000 11111 00000 11111

Noise from channel 01100 01101 00000 10001

Encoding

Decoding

The optimal decoding of a repetition code is to take the 
majority vote of each 𝑛 bits.

01100 01101 00000 10001→𝑅5 0100



Repetition code visualization

Easy to see and understand how it works, but not a useful code.

A high probability of 
bit-error 𝑝𝑏 in the 
transmitted data still 
exists.



Example: Linear block codes

A linear length 𝑁 block code adds redundancy to 
a length 𝐾 < 𝑁 sequence of source bits. 

The extra 𝐾 − 𝑁 bits are called parity-check bits, 
which are linear combinations of the source bits 
mod 2.
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(7,4) Hamming 
code example



More about linear block codes
Linear block codes are a large family of error-correcting 
codes, which include:

They differ by the linear transformation from 𝒔 to 𝒕.

Reed-Solomon codes, Hamming codes, Hadamard codes, Expander codes, 
Golay codes, Reed-Muller codes, …

The rate of a block code is 𝑅 =
𝐾

𝑁
=

𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑠𝑖𝑧𝑒

𝑏𝑙𝑜𝑐𝑘 𝑠𝑖𝑧𝑒

Decoding can become tricky for these codes, and is 
unique to the specific type of code used.

Hamming codes, for instance, are nice because there is a simple and visual 
way, using Hamming distances, to optimally decode.



Linear block code visualization

There is less redundancy in the error-coding  (𝒔 → 𝒕) compared 
to repetition coding, but the probability of error scales the 
same as repetition coding 𝑝𝑏 = 𝑂(𝑓2).



Shannon’s noisy-channel coding 
theorem

In 1948, Claude Shannon showed that 1) there is a boundary between achievable and 
not achievable codes in the 𝑅, 𝑝𝑏 plane and that 2) codes can exist where 𝑅 does not 
vanish when the error probability 𝑝𝑏 goes to zero.

Note: This does not mean that codes near the boundary can be efficiently decoded!



Sparse graph codes

Transmitted bits

Parity-check bits
(constraints)

A low-density parity check code (or Gallager code) is a 
randomly generated linear block code represented by a sparse 
bipartite graph (sparse 𝑮𝑇).

𝑮𝑇

Another example of a useful sparse graph code is a turbo code. 



Belief Propagation

Visible

Hidden

𝑮𝑇
It is in general an NP-complete problem to 
decode low-density parity check codes.

However, a practically efficient 
approximate method exists, called Belief 
Propagation (BP) or the Sum-Product 
algorithm.

It is a message passing algorithm that solves an inference 
problem on a probabilistic graphical model

BP is a physics-inspired algorithm. It casts a probability distribution 
represented by a graph in terms of a Boltzmann distribution. Then it 
attempts to find the fixed point of the Free Energy under the Bethe 
approximation. It is exact for graphical models, which are trees.

Details can wait for another talk…
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