
Algorithm Interest Group
presentation by Eli Chertkov

Error-correcting codes

http://www.computer-questions.com/what-to-do-when-error-code-8003-happens/

Society needs to communicate over
noisy communication channels

https://www.nasa.gov/sites/default/files/tdrs_relay.jpg

https://en.wikipedia.org/wiki/Cell_site

http://www.diffen.com/difference/Modem_vs_Router

https://en.wikipedia.org/wiki/Hard_disk_drive

Noisy bits

We will visualize noise in data through random
flipping of pixels in a black and white image.

𝑓 = probability of flipping a bit from 0 to 1 or vice versa

1 − 𝑓 = probability of a bit staying the same

Noisy channel coding

To minimize the noise picked up by source data 𝒔 as it passes
through a noisy channel, we can convert the data into a redundant
signal 𝒕.

Example: Repetition codes

The simplest encoding one can think of is repetition
coding 𝑅𝑛: repeat each bit 𝑛 times.

0101 →𝑅5 00000 11111 00000 11111

Noise from channel 01100 01101 00000 10001

Encoding

Decoding

The optimal decoding of a repetition code is to take the
majority vote of each 𝑛 bits.

01100 01101 00000 10001→𝑅5 0100

Repetition code visualization

Easy to see and understand how it works, but not a useful code.

A high probability of
bit-error 𝑝𝑏 in the
transmitted data still
exists.

Example: Linear block codes

A linear length 𝑁 block code adds redundancy to
a length 𝐾 < 𝑁 sequence of source bits.

The extra 𝐾 − 𝑁 bits are called parity-check bits,
which are linear combinations of the source bits
mod 2.

𝐾 𝐾 𝑁 − 𝐾𝒔 𝒕

𝒕 = 𝑮𝑇𝒔 𝑮𝑇 =

1
1

1
1

1 1
1

1
1 1

1 1 1

𝒔 =

1
0
1
0

𝒕 =

0
1
0
1
1
0
1

(7,4) Hamming
code example

More about linear block codes
Linear block codes are a large family of error-correcting
codes, which include:

They differ by the linear transformation from 𝒔 to 𝒕.

Reed-Solomon codes, Hamming codes, Hadamard codes, Expander codes,
Golay codes, Reed-Muller codes, …

The rate of a block code is 𝑅 =
𝐾

𝑁
=

𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑠𝑖𝑧𝑒

𝑏𝑙𝑜𝑐𝑘 𝑠𝑖𝑧𝑒

Decoding can become tricky for these codes, and is
unique to the specific type of code used.

Hamming codes, for instance, are nice because there is a simple and visual
way, using Hamming distances, to optimally decode.

Linear block code visualization

There is less redundancy in the error-coding (𝒔 → 𝒕) compared
to repetition coding, but the probability of error scales the
same as repetition coding 𝑝𝑏 = 𝑂(𝑓2).

Shannon’s noisy-channel coding
theorem

In 1948, Claude Shannon showed that 1) there is a boundary between achievable and
not achievable codes in the 𝑅, 𝑝𝑏 plane and that 2) codes can exist where 𝑅 does not
vanish when the error probability 𝑝𝑏 goes to zero.

Note: This does not mean that codes near the boundary can be efficiently decoded!

Sparse graph codes

Transmitted bits

Parity-check bits
(constraints)

A low-density parity check code (or Gallager code) is a
randomly generated linear block code represented by a sparse
bipartite graph (sparse 𝑮𝑇).

𝑮𝑇

Another example of a useful sparse graph code is a turbo code.

Belief Propagation

Visible

Hidden

𝑮𝑇
It is in general an NP-complete problem to
decode low-density parity check codes.

However, a practically efficient
approximate method exists, called Belief
Propagation (BP) or the Sum-Product
algorithm.

It is a message passing algorithm that solves an inference
problem on a probabilistic graphical model

BP is a physics-inspired algorithm. It casts a probability distribution
represented by a graph in terms of a Boltzmann distribution. Then it
attempts to find the fixed point of the Free Energy under the Bethe
approximation. It is exact for graphical models, which are trees.

Details can wait for another talk…

References

• Awesome resource (especially for physicists):

Information Theory, Inference, and

Learning Algorithms by David MacKay.

(Basically the whole
presentation is based
off of the material in
this book.)

References (continued)

• Resource on Belief
Propagation:

Yedidia, J.S.; Freeman,
W.T.; Weiss, Y.,
“Understanding Belief
Propagation and Its
Generalizations”, Exploring
Artificial Intelligence in the
New Millennium (2003)
Chap. 8, pp. 239-269.

