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Error-correcting codes

Algorithm Interest Group
presentation by Eli Chertkov

http://www.computer-questions.com/what-to-do-when-error-code-8003-happens/



Society needs to communicate over
noisy communication channels

_ oAy Computer

-

’ 'I' e
@ P — T— I
e m
Internet Modem Router ‘x Mg Computer
— = A"
|

https://en.wikipedia.org/wiki/Hard_disk_drive 3, Prone
http://www.diffen.com/difference/Modem_vs_Router
https://en.wikipedia.org/wiki/Cell_site
https://www.nasa.gov/sites/default/files/tdrs_relay.jpg




Noisy bits

We will visualize noise in data through random
flipping of pixels in a black and white image.

REDUNDM-

f = probability of flipping a bit from 0 to 1 or vice versa

1 — f = probability of a bit staying the same




Noisy channel coding

To minimize the noise picked up by source data s as it passes
through a noisy channel, we can convert the data into a redundant

signal t.
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Example: Repetition codes

The simplest encoding one can think of is repetition
coding R,,: repeat each bit n times.

Encoding 0101 —%5 00000 11111 00000 11111

Noise from channel 01100 01101 00000 10001

The optimal decoding of a repetition code is to take the
majority vote of each n bits.

Decoding 01100 01101 00000 10001 -»%s 0100




Repetition code visualization
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A high probability of
bit-error py, in the
transmitted data still
exists.

Easy to see and understand how it works, but not a useful code.




Example: Linear block codes

A linear length N block code adds redundancy to

a length K < N sequence of source bits.

S K 5t K N-—K

The extra K — N bits are called parity-check bits,
which are linear combinations of the source bits

code example
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More about linear block codes

Linear block codes are a large family of error-correcting
codes, which include:

Reed-Solomon codes, Hamming codes, Hadamard codes, Expander codes,
Golay codes, Reed-Muller codes, ...

They differ by the linear transformation from s to t.

) K message size
The rate of a block codeis R = — = J :
N block size

Decoding can become tricky for these codes, and is
unique to the specific type of code used.

Hamming codes, for instance, are nice because there is a simple and visual
way, using Hamming distances, to optimally decode.




Linear block code visualization
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There is less redundancy in the error-coding (s — t) compared
to repetition coding, but the probability of error scales the
same as repetition coding p, = 0(f?).




Shannon’s noisy-channel coding

theorem
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In 1948, Claude Shannon showed that 1) there is a boundary between achievable and
not achievable codes in the (R, p;,) plane and that 2) codes can exist where R does not

vanish when the error probability p, goes to zero.

Note: This does not mean that codes near the boundary can be efficiently decoded!




Another example of a useful sparse graph code is a turbo code.

Sparse graph codes
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randomly generated linear block code represented by a sparse

A low-density parity check code (or Gallager code) is a
bipartite graph (sparse G').

Parity



Belief Propagation

It is in general an NP-complete problem to Visible <.¢
decode low-density parity check codes.

However, a practically efficient
approximate method exists, called Belief
Propagation (BP) or the Sum-Product
algorithm.

Hidden

It is @ message passing algorithm that solves an inference
problem on a probabilistic graphical model

BP is a physics-inspired algorithm. It casts a probability distribution
represented by a graph in terms of a Boltzmann distribution. Then it
attempts to find the fixed point of the Free Energy under the Bethe
approximation. It is exact for graphical models, which are trees.

Details can wait for another talk...
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 Awesome resource (especially for physicists):

Information Theory, Inference, and
Learning Algorithms by David MacKay.

David J.C. MacKay

Information Theory, Inference,
and Learning Algorithms
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(Basically the whole i -
presentation is based
off of the material in
this book. )
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(I . . “Inference” problems arise in statistical physics, computer vision, error-correcting coding the-
ory, and Al. We explain the principles behind the belief propagation (BP) algorithm, which is
an efficient way to solve inference problems based on passing local messages. We develop a

unified approach with examples, notation, and graphical models borrowed from the relevant dis-

ciplines.We explain the close connection between the BP algorithm and the Bethe approximation
of statistical physics. In particular, we show that BP can only converge to a fixed point that is also

.
P ro a a t I O n a n d I tS a stationary point of the Bethe approximation to the free energy. This result helps explain the
successes of the BP algorithm and enables connections to be made with variational approaches

to approximate inference.
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