Fast Fourier Transform

Dima Kochkov?!

IDepartment of Physics
University of lllinois at Urbana-Champaign

Algorithm interest meeting, 2016

Outline

© Impact

@ Significance
@ Applications
© Math part
@ Definitions
@ Ring of Polynomials
@ Representations of
polynomials

@ Summation
@ Multiplication
@ Evaluation

© Algorithm
@ Switching representations
@ Recursive evaluation

@ References

L Je]

Outline

© Impact

@ Significance

oe

Significance

Fast Fourier Transform is considered to be one of the most
important algorithms of 20" century. It performs Discrete Fourier
Transform in Nlog, N time in comparison to the naive N2. This
algorithm is accountable for many advances and wide applicability
of Fourier transformation in numerics.

Hi, D Elzaketh?
Yech, vh... I acc?d:ﬁ'tdb el
“the Surier transfocm of My Cadt . .

& ’ Meees !
- M

[Je}

Outline

© Impact

@ Applications

oe

Where it is used

Fast Fourier Transform is heavily used in many fields, including,
but not limited to:

Data analysis (Fourier components)

Data compression (Jpeg, MP3, etc)

Partial differential equation solvers

Big integer multiplication

Outline

© Math part
@ Definitions

In the literature the term Fast Fourier Transform stands for an
algorithm that computes a Discrete Fourier Transform in N log, N
time. There exist a variety of different implementations and
generalizations. In this talk | will only concentrate on the central

idea.
k=N—1

FFT(R) =X X = 2™ gy (1)
k=0
Which is equivalent to a convolution of a given sequence with a
special sequence of elements. In the following sections | will map
the problem to a multiplication of polynomials and will closely
follow the lecture on FFT by Erik Demaine MIT lecture on FFT

https://www.youtube.com/watch?v=iTMn0Kt18tg

Outline

Math part
(2 p

@ Ring of Polynomials

Polynomials

A polynomial ring in X over a field K is an algebraic structure that
consists of polynomials of variable z € X and coefficients from the

field K.
j=N-1

PN_l(Z) = ajzf (2)
Jj=0
This structure features addition, multiplication and CS-ish addition
evaluation operations. In this presentation we will establish a
correspondence between vectors and polynomials, as well as
different operations on them.

Outline

Math part
(2 p

@ Representations of
polynomials

Representations

There are several reasonable representations that we might
consider:

o Coefficients a; :
Pn-i(z) = Y02y 1 a7
@ Roots z; :
P,\y_l(z) =an_1(z—2zy-1)..-(z—21)
o Samples (z;, Py_1(z)) for N
different points

REPRESENTATION

From now on | will fix the N to be some power of 2 and will use
bottom index to indicate different polynomials.

Outline

@ Summation

Math part
(2 p

Summation

Coefficients
P.(z) + Py(z) = Pc(z) : ¢j = aj + bj : add corresponding
coefficients N

Impossible if arbitrary precision is desired

P.(zj) + Pb(zj) = Pc(z) : add corresponding values of P N

So far : coefficients - ok, Samples - ok, Roots - Boo!

Outline

@ Multiplication

© Math part

Multiplication

Coefficients

P.(2) % Po(2) = Pe(z) : ¢ = S 5=b aw x bj — k N2

Concatenate the list of roots, update the leading coefficient N

Pa(z;) * Pp(z;) = Pc(zj) : multiply corresponding values of P N

So far : coefficients - nah, Samples - alpha?, Roots - still boo!

Outline

@ Evaluation
© Math part

Evaluation

Coefficients

P.(z) : add contributions from different powers, N

Evaluate multiplication of [[;(z — z) N

Have to solve for coefficients system of N linear equations /N2

No representation is perfect :-(

Outline

© Algorithm
@ Switching representations

Evaluation at N points

The algorithm gets its boost by jumping back and forth between
representations. We will concentrate on the transformation from
the coefficient representation to the samples representation, since
the inverse is similar.

To do that we need to evaluate P at N different points. N x N,
can we do better?

Outline

© Algorithm

@ Recursive evaluation

Split even and odd powers

We can rewrite evaluation P(z) as a sum of 2 values that can be
computed recursively:

j=N-1

: N—-1 : N—-1
= =
' 2j 2j 2 2
E ajz = E ajz9+z E axj4129 = Py(2°)+2zPp(z7)
Jj=0 Jj=0 Jj=0

(3)

0Odd coefficients / XEven coefficients

Odd coefficients Even coefficients
OO O

=2

*

5

OO =

=2

~

Odd coefficients Even coefficients

Now we will use the freedom of choosing sample points to make
this algorithm work! Consider the set of roots of unity.

P . 3T

[e2, e e, &M — [-1,1] (4)
The number of points on which one needs to evaluate consecutive
polynomials shrinks by a factor of 2 with every recursion call. That
insures the N log,(N) performance.

Algorithm

RECURSIVE-FFT(a)
INPUT: A(z) in the coefficient vector a = (ag, a1, ,An—1)
OUTPUT: the DFT of a
. n <« length[a]
Cif (n=1)

then return a Vbase case

Wy, — e2mi/n
w1
a’ — (ag,az, - ,0n_2)
a’ «— (a1,a3, - ,an_1)
y' «— RECURSIVE-FFT(a’)
. y” «— RECURSIVE-FFT(a")
10. fork «— 0 to n/2 — 1
11. Y — Yp + wyy
12. Ykt (n/2) < Y — WY
13. W — WW,
14. return y

CRNO TR W

courses, books

MIT video lecture on FFT by Erik Demaine
lecture on FFT, complexity analysis

https://www.youtube.com/watch?v=iTMn0Kt18tg
http://www.cs.columbia.edu/~stratos/research/fft.pdf

	Impact
	Significance
	Applications

	Math part
	Definitions
	Ring of Polynomials
	Representations of polynomials
	Summation
	Multiplication
	Evaluation

	Algorithm
	Switching representations
	Recursive evaluation

	References

