◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

### Fast Fourier Transform

#### Dima Kochkov<sup>1</sup>

<sup>1</sup>Department of Physics University of Illinois at Urbana-Champaign

Algorithm interest meeting, 2016

# Outline

#### Impact

- Significance
- Applications
- 2 Math part
  - Definitions
  - Ring of Polynomials
  - Representations of polynomials

- Summation
- Multiplication
- Evaluation
- 3 Algorithm
  - Switching representations

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Recursive evaluation

#### 4 References

# Outline

# Impact Significance

- Applications
- 2 Math part
  - Definitions
  - Ring of Polynomials
  - Representations of polynomials

- Summation
- Multiplication
- Evaluation
- 3 Algorithm
  - Switching representations

• Recursive evaluation

#### 4 References

| Impact       | Math part   | Algorithm | References |
|--------------|-------------|-----------|------------|
| 0●00         | 00000000000 | 000000    |            |
| Significance |             |           |            |

Fast Fourier Transform is considered to be one of the most important algorithms of  $20^{th}$  century. It performs Discrete Fourier Transform in  $N \log_2 N$  time in comparison to the naive  $N^2$ . This algorithm is accountable for many advances and wide applicability of Fourier transformation in numerics.

Hi, Dr. Elizabeth? Yeah, Uh... I accidentally took the Fourier transform of my cat... Meou

# Outline

#### Impact

- Significance
- Applications
- 2 Math part
  - Definitions
  - Ring of Polynomials
  - Representations of polynomials

- Summation
- Multiplication
- Evaluation
- 3 Algorithm
  - Switching representations

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

• Recursive evaluation

#### 4 References

| Where it is used |             |           |            |
|------------------|-------------|-----------|------------|
| Impact           | Math part   | Algorithm | References |
| 0000             | ooooooooooo | 000000    |            |

Fast Fourier Transform is heavily used in many fields, including, but not limited to:

- Data analysis (Fourier components)
- Data compression (Jpeg, MP3, etc)
- Partial differential equation solvers
- Big integer multiplication





# Outline

#### Impact

- Significance
- Applications
- 2 Math part
  - Definitions
  - Ring of Polynomials
  - Representations of polynomials

- Summation
- Multiplication
- Evaluation
- 3 Algorithm
  - Switching representations
  - Recursive evaluation

#### References

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

In the literature the term Fast Fourier Transform stands for an algorithm that computes a Discrete Fourier Transform in  $N \log_2 N$  time. There exist a variety of different implementations and generalizations. In this talk I will only concentrate on the central idea.

$$FFT(\vec{a}) = \vec{X}$$
 :  $X_j = \sum_{k=0}^{k=N-1} e^{2\pi i \frac{kj}{N}} a_k$  (1)

Which is equivalent to a convolution of a given sequence with a special sequence of elements. In the following sections I will map the problem to a multiplication of polynomials and will closely follow the lecture on FFT by Erik Demaine MIT lecture on FFT

# Outline

#### Impact

- Significance
- Applications
- 2 Math part
  - Definitions
  - Ring of Polynomials
  - Representations of polynomials

- Summation
- Multiplication
- Evaluation
- 3 Algorithm
  - Switching representations
  - Recursive evaluation

#### References

#### Polynomials

A polynomial ring in X over a field K is an algebraic structure that consists of polynomials of variable  $z \in X$  and coefficients from the field K.

$$P_{N-1}(z) = \sum_{j=0}^{j=N-1} a_j z^j$$
(2)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

This structure features addition, multiplication and CS-ish addition evaluation operations. In this presentation we will establish a correspondence between vectors and polynomials, as well as different operations on them.

# Outline

#### Impact

- Significance
- Applications
- 2 Math part
  - Definitions
  - Ring of Polynomials
  - Representations of polynomials

- Summation
- Multiplication
- Evaluation
- 3 Algorithm
  - Switching representations
  - Recursive evaluation

#### 4 References

#### Representations

There are several reasonable representations that we might consider:

- Coefficients  $a_j$ :  $P_{N-1}^{(z)}(z) = \sum_{j=0}^{j=N-1} a_j z^j$
- Roots  $z_j$ :  $P_{N-1}(z) = a_{N-1}(z-z_{N-1})..(z-z_1)$
- Samples (z<sub>j</sub>, P<sub>N-1</sub>(z<sub>j</sub>)) for N different points



From now on I will fix the N to be some power of 2 and will use bottom index to indicate different polynomials.

# Outline

#### Impact

- Significance
- Applications
- 2 Math part
  - Definitions
  - Ring of Polynomials
  - Representations of polynomials

- Summation
- Multiplication
- Evaluation
- 3 Algorithm
  - Switching representations
  - Recursive evaluation

#### References

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

#### Summation

#### Coefficients

$$P_a(z) + P_b(z) = P_c(z)$$
:  $c_j = a_j + bj$ : add corresponding coefficients N

#### Roots

Impossible if arbitrary precision is desired

#### Samples

 $P_a(z_j) + P_b(z_j) = P_c(z_j)$ : add corresponding values of P N

So far : coefficients - ok, Samples - ok, Roots - Boo!

# Outline

#### Impact

- Significance
- Applications
- 2 Math part
  - Definitions
  - Ring of Polynomials
  - Representations of polynomials

- Summation
- Multiplication
- Evaluation
- 3 Algorithm
  - Switching representations
  - Recursive evaluation

#### 4 References

< ロ > < @ > < E > < E > E の < 0</p>

# **Multiplication**

#### Coefficients

$$P_a(z) * P_b(z) = P_c(z) : c_j = \sum_{k=0}^{k=N} a_k * bj - k N^2$$

#### Roots

Concatenate the list of roots, update the leading coefficient N

#### Samples

 $P_a(z_j) * P_b(z_j) = P_c(z_j)$ : multiply corresponding values of P N

So far : coefficients - nah, Samples - alpha?, Roots - still boo!

# Outline

#### Impact

- Significance
- Applications
- 2 Math part
  - Definitions
  - Ring of Polynomials
  - Representations of polynomials

- Summation
- Multiplication
- Evaluation
- 3 Algorithm
  - Switching representations
  - Recursive evaluation

#### 4 References

< ロ > < @ > < E > < E > E の < 0</p>

| Impact |  |
|--------|--|
| 0000   |  |

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

#### **Evaluation**

#### Coefficients

 $P_c(z)$ : add contributions from different powers, N

#### Roots

Evaluate multiplication of  $\prod_{i}(z - z_i)$  N

#### Samples

Have to solve for coefficients system of N linear equations  $N^2$ 

No representation is perfect :-(

# Outline

#### Impact

- Significance
- Applications
- 2 Math part
  - Definitions
  - Ring of Polynomials
  - Representations of polynomials

- Summation
- Multiplication
- Evaluation
- 3 Algorithm
  - Switching representations
  - Recursive evaluation

#### References

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

# Evaluation at N points

The algorithm gets its boost by jumping back and forth between representations. We will concentrate on the transformation from the **coefficient** representation to the **samples** representation, since the inverse is similar.

To do that we need to evaluate P at N different points. N \* N, can we do better?

# Outline

#### Impact

- Significance
- Applications
- 2 Math part
  - Definitions
  - Ring of Polynomials
  - Representations of polynomials

- Summation
- Multiplication
- Evaluation
- 3 Algorithm
  - Switching representations

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Recursive evaluation

#### References

| Impact | Math part   | Algorithm | References |
|--------|-------------|-----------|------------|
| 0000   | ooooooooooo | 0000000   |            |
|        |             |           |            |

#### Split even and odd powers

We can rewrite evaluation P(z) as a sum of 2 values that can be computed recursively:

$$P(z) = \sum_{j=0}^{j=N-1} a_j z^j = \sum_{j=0}^{j=\frac{N-1}{2}} a_{2j} z^{2j} + z \sum_{j=0}^{j=\frac{N-1}{2}} a_{2j+1} z^{2j} = P_a(z^2) + zP_b(z^2)$$
(3)
  
Odd coefficients
  
P(N/2,X)
  
P(N/4,X)
  
P(N

Magic!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Now we will use the freedom of choosing sample points to make this algorithm work! Consider the set of roots of unity.

$$[e^{i\frac{\pi}{2}}, e^{i\pi}, e^{i\frac{3\pi}{2}}, e^{2\pi}]^2 \to [-1, 1]$$
(4)

The number of points on which one needs to evaluate consecutive polynomials shrinks by a factor of 2 with every recursion call. That insures the  $N \log_2(N)$  performance.

| Ir | n | p  | a |  |
|----|---|----|---|--|
|    | C | 00 |   |  |

Math part

Algorithm

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

#### Algorithm

#### **RECURSIVE-FFT**(a)INPUT: A(x) in the coefficient vector $a = (a_0, a_1, \cdots, a_{n-1})$ OUTPUT: the DFT of a1. $n \leftarrow length[a]$ 2. if (n = 1)3. then return a $\nabla base\ case$ 4. $w_n \leftarrow e^{2\pi i/n}$ 5. $w \leftarrow 1$ 6. $a' \leftarrow (a_0, a_2, \cdots, a_{n-2})$ 7. $a'' \leftarrow (a_1, a_3, \cdots, a_{n-1})$ 8. $y' \leftarrow \text{RECURSIVE-FFT}(a')$ 9. $y'' \leftarrow \text{RECURSIVE-FFT}(a'')$ 10. for $k \leftarrow 0$ to n/2 - 111. $y_k \leftarrow y'_k + wy''_k$ 12. $y_{k+(n/2)} \leftarrow y'_k - wy''_k$ 13. $w \leftarrow w w_n$ 14. return y

Impact 0000 Math part 0000000000 Algorithm 000000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

#### courses, books

# MIT video lecture on FFT by Erik Demaine lecture on FFT, complexity analysis