
INTRODUCTION TO SUPERVISED
MACHINE LEARNING

BENJAMIN VILLALONGA CORREA

INTRODUCTION TO SUPERVISED MACHINE LEARNING

THE PROBLEM
MNIST is the typical benchmark for each supervised machine learning algorithm:

+ tags (that classify the images)

Train the machine with a lot of (image,tag) pairs.

The machine thinks 5!

INTRODUCTION TO SUPERVISED MACHINE LEARNING

LET’S FORMALIZE THE PROBLEM

Input images are vectors of a 28*28-dimensional space:

= (0.0, . . . , 0.997, 0.861, . . . , 0.0)T = x

There is a function that from the space of x’s to the space of y’s that:

And tags are basis vectors of a 10-dimensional space:

8 = (0, 0, 0, 0, 0, 0, 0, 0, 1, 0) = y

f(x) = ỹ ⇡ y

This discrepancy will be quantified through a cost function, which we will minimize.

What class of functions will be easy to use and give good results?

INTRODUCTION TO SUPERVISED MACHINE LEARNING

NEURAL NETWORKS: PERCEPTRONS

output = ⇥(

X

i

wi · xi + b)

By arranging perceptrons in complicated networks we can get nuanced decision making:

However, the output is discretized, and they are hard to optimize. Let’s get a continuous version.

INTRODUCTION TO SUPERVISED MACHINE LEARNING

NEURAL NETWORKS: SIGMOID NEURONS
The sigmoid function is a continuous “version” of the step function:

�(z) =
1

1 + e�z

input x output ỹ ⇡ y

The output is now a probability distribution of how likely it is that each number has been detected.

The exact y is also a probability distribution, but with 100% certainty of what the label is.

Each neuron decides “continuously”.

INTRODUCTION TO SUPERVISED MACHINE LEARNING

THE ACTION OF EACH LAYER OF NEURONS
Each neuron (j) applies a linear function from a vector space to 1-D space:

then “softens” the result by the (non-linear, but monotonic) sigmoid function:

zj =
X

i

wj,i · xi + bj

�(z) =
1

1 + e�z

If every neuron in a layer is connected to every neuron in the next one, then:

(plus the constant b)

z

layer = w

layer · xlayer + b

layer

x

layer+1 = �(zlayer)

We call the last output:

ỹ

INTRODUCTION TO SUPERVISED MACHINE LEARNING

COST FUNCTION
There are many possible choices. One is average euclidean norm of the discrepancy over a training set:

C(w, b) ⌘ 1

2n

X

x

|ỹ � y|2

(Another good choice would be the cross-entropy between both distributions…)

Loading an entire training set of x’s and y’s, we minimize C through (say) an Gradient Descent.

Training sets might get very large, so we usually approximate
P

m

j=1 rC
xj

m
⇡

P
n

j=1 rC
xj

n
= rC Stochastic Gradient Descent

Where the set of m training elements was chosen randomly among the full set of elements.

Gradient descent methods rely on computing partial derivatives. The backpropagation method makes it
cheap.

INTRODUCTION TO SUPERVISED MACHINE LEARNING

BACKPROPAGATION (IN 2 MINS)

It is much cheaper to traverse backwards (only once).

INTRODUCTION TO SUPERVISED MACHINE LEARNING

NIELSEN’S PEDAGOGICAL CODE

▸ 3 layers (input, hidden and output).

▸ Mini-batches of 10 images.

▸ 30 training epochs.

▸ Learning rate (step of the descent) of 3.0.

▸ Gets about 95% accuracy over test cases.

INTRODUCTION TO SUPERVISED MACHINE LEARNINGTEXT

DEMONSTRATION

Demonstrating…

INTRODUCTION TO SUPERVISED MACHINE LEARNING

INTUITION OVER A LAYER’S WEIGHTS
For a (no hidden, less intuitive) layer network, TensorFlow gets the following weights (for fixed output i):

wi,j

INTRODUCTION TO SUPERVISED MACHINE LEARNING

REFERENCES

▸ TensorFlow tutorials (tensorflow.org)

▸ Michael Nielsen’s free online book
(neuralnetworksanddeeplearning.com)

▸ Colah’s blog (http://colah.github.io)

▸ Almost all figures come from Nielsen’s book, except for
the backpropagation graph (Colah) and the weights of
that contribute to evidence (TensorFlow).

