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THE PROBLEM
MNIST is the typical benchmark for each supervised machine learning algorithm:

+ tags (that classify the images)

Train the machine with a lot of (image,tag) pairs.

The machine thinks 5!
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LET’S FORMALIZE THE PROBLEM

Input images are vectors of a 28*28-dimensional space:

= (0.0, . . . , 0.997, 0.861, . . . , 0.0)T = x

There is a function that from the space of x’s to the space of y’s that:

And tags are basis vectors of a 10-dimensional space:

8 = (0, 0, 0, 0, 0, 0, 0, 0, 1, 0) = y

f(x) = ỹ ⇡ y

This discrepancy will be quantified through a cost function, which we will minimize.

What class of functions will be easy to use and give good results?
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NEURAL NETWORKS: PERCEPTRONS

output = ⇥(

X

i

wi · xi + b)

By arranging perceptrons in complicated networks we can get nuanced decision making:

However, the output is discretized, and they are hard to optimize. Let’s get a continuous version.
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NEURAL NETWORKS: SIGMOID NEURONS
The sigmoid function is a continuous “version” of the step function:

�(z) =
1

1 + e�z

input x output ỹ ⇡ y

The output is now a probability distribution of how likely it is that each number has been detected. 

The exact y is also a probability distribution, but with 100% certainty of what the label is.

Each neuron decides “continuously”.
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THE ACTION OF EACH LAYER OF NEURONS
Each neuron (j) applies a linear function from a vector space to 1-D space:

then “softens” the result by the (non-linear, but monotonic) sigmoid function:

zj =
X

i

wj,i · xi + bj

�(z) =
1

1 + e�z

If every neuron in a layer is connected to every neuron in the next one, then:

(plus the constant b)

z

layer = w

layer · xlayer + b

layer

x

layer+1 = �(zlayer)

We call the last output:

ỹ
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COST FUNCTION
There are many possible choices. One is average euclidean norm of the discrepancy over a training set:

C(w, b) ⌘ 1

2n

X

x

|ỹ � y|2

(Another good choice would be the cross-entropy between both distributions…)

Loading an entire training set of x’s and y’s, we minimize C through (say) an Gradient Descent.

Training sets might get very large, so we usually approximate
P

m

j=1 rC
xj

m
⇡

P
n

j=1 rC
xj

n
= rC Stochastic Gradient Descent

Where the set of m training elements was chosen randomly among the full set of elements.

Gradient descent methods rely on computing partial derivatives. The backpropagation method makes it 
cheap.
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BACKPROPAGATION (IN 2 MINS)

It is much cheaper to traverse backwards (only once).
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NIELSEN’S PEDAGOGICAL CODE

▸ 3 layers (input, hidden and output). 

▸ Mini-batches of 10 images. 

▸ 30 training epochs. 

▸ Learning rate (step of the descent) of 3.0. 

▸ Gets about 95% accuracy over test cases.
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DEMONSTRATION

Demonstrating…
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INTUITION OVER A LAYER’S WEIGHTS
For a (no hidden, less intuitive) layer network, TensorFlow gets the following weights (for fixed output i):

wi,j
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REFERENCES

▸ TensorFlow tutorials (tensorflow.org) 

▸ Michael Nielsen’s free online book 
(neuralnetworksanddeeplearning.com) 

▸ Colah’s blog (http://colah.github.io) 

▸ Almost all figures come from Nielsen’s book, except for 
the backpropagation graph (Colah) and the weights of 
that contribute to evidence (TensorFlow).


