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Disclaimer

PSLQ was picked as a top 10 algorithm by two editors of CiSE. Their words: 
“We tried to assemble the 10 algorithms with the greatest influence on the 
development and practice of science and engineering in the 20th century.”


Some others that made the cut: Monte Carlo methods (Neumann, Ulam, 
Metropolis), decompositions in matrix computations (Householder), 
Quicksort (Hoare), FFT (Cooley and Tukey)



• What is PSLQ?


• How does it work? (briefly)


• Why does it work?


• Applications / demos



What is PSLQ?

PSLQ is an algorithm for finding integer relations. Given a vector 
, an integer relation for  (if it exists) is an integer vector 

 such that 


Specifically, each iteration of PSLQ produces a lower bound on the norm 
for all possible integer relations

x = (x1, …, xn) x
m = (m1, …, mn) ∑

i

ximi = 0

|m |



Wait…isn’t that easy?

Just generate a vector orthogonal to  and rescale it until you have integers?


Suppose (1, 3.65028154, 13.32455532, 48.63837831, 177.54377448). 
One orthogonal vector is (3.65028154, -1, 0, 0, 0). Rescale it to 
(182513077, 50000000, 0, 0, 0), and there’s your integer relation!


But…is there a smaller one?


PSLQ attempts to find the smallest integer relation, up to some precision

x

x =
xo = m =



excerpt and figure from Bailey & Borwein, PSLQ: An Algorithm to Discover Integer Relations

“PSLQ operates by 
constructing a sequence of 
integer-valued matrices  

that reduces the vector 
, until either the 

relation is found (as one of 
the columns of ), or else 
precision is exhausted.” 

Bn

y = xBn

Bn



Pseudocode



mpmath.pslq()

The pseudocode is relatively straightforward, but note the indices start from 
1 and not 0. There is also another catch:


“If one wishes to recover a relation of length , with coefficients of maximum 
size  digits, then the input vector  must be specified to at least  digits, 
and one must employ -digit floating-point arithmetic.”


To save myself some trouble: I’m just going to use the algorithm as 
implemented in the mpmath library

n
d x nd

nd



Application: identifying algebraic numbers

Given a number , let . An integer relation  for  would 
mean that  is a root to the polynomial  so for 
simple enough polynomials, an expression for  can be deduced


Demo: identify 3.65028154

α x = (1,α, …, αn) m x
α m0 + m1α + …mnαn = 0

α



Solution

 
0 = − 9 + 14α2 − α4

⟹ α = 2 10 + 7



Application: Euler-Mashceroni constant

This constant is the limiting difference between the harmonic series and 
natural log


 


It is not known whether or not this is an algebraic number, or even if it is 
rational. With careful attention to precision, it can be checked with PSLQ 
that it is not the root of any integer polynomial of degree , where you can 
try as large  as your machine can handle

γ ≡ lim
n→∞ (−log n +

n

∑
k=1

1
k )

n
n



Application: a new formula for pi

The formula


 


was found with PSLQ and subsequently proved. It can be shown that this 
can be used to compute the th digit of pi in hexadecimal without having to 
compute the previous  digits

π =
∞

∑
i=0

1
16i ( 4

8i + 1
−

2
8i + 4

−
1

8i + 5
−

1
8i + 6 )

n
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Application: a new formula for pi

Found by looking for an integer relation for  where


 

x = (X1, …, X8, π)

Xj ≡
∞

∑
k=0

1
16k(8k + j)



Summary
PSLQ:


• is an algorithm which either finds integer relations or bounds for possible 
relations


• is commonly used in number recognition routines


• has led numerous “discoveries,” notably a new formula for , but also 
other more technical discoveries that were not covered here


We also went over how to “use” PSLQ, paying attention to the behavior of 
the “error” over time, as well as the precision used

π



Summary
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