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Disclaimer

PSLQ was picked as a top 10 algorithm by two editors of CiSE. Their words:
“We tried to assemble the 10 algorithms with the greatest influence on the
development and practice of science and engineering in the 20th century.”

Some others that made the cut: Monte Carlo methods (Neumann, Ulam,
Metropolis), decompositions in matrix computations (Householder),

Quicksort (Hoare), FFT (Cooley and Tukey)



What is PSLQ?

How does it work? (briefly)

Applications / demos



What is PSLQ?

PSLQ is an algorithm for finding integer relations. Given a vector
x = (x;,...,X,), an integer relation for x (if it exists) is an integer vector

m = (my, ...,m,) such that inml- =0
i

Specifically, each iteration of PSLQ produces a lower bound on the norm
| 1 | for all possible integer relations



Walit...isn’t that easy?

Just generate a vector orthogonal to x and rescale it until you have integers”?

Suppose x = (1, 3.65028154, 13.32455532, 48.63837831, 177.54377448).

One orthogonal vector is x, = (3.65028154, -1, 0, 0, 0). Rescale it to m =
(182513077, 50000000, 0, 0, 0), and there’s your integer relation!

But...is there a smaller one?

PSLQ attempts to find the smallest integer relation, up to some precision



the relation is real and not merely a numerical artifact. A drop of 20 or more orders of
magnitude almost always indicates a real relation (see Figure 1).

“PSLQ operates by S B S
constructing a sequence of |

integer-valued matrices 5,
that reduces the vector

y = xB,, until either the
relation is found (as one of

the columns of B)), or else
precision Is exhausted.”

Figure 1: log,, ming |yx| versus iteration number in a typical PSLQ run

excerpt and figure from Bailey & Borwein, PSLQ: An Algorithm to Discover Integer Relations



Pseudocode

Initialize:

1. Setthe 2 X 7 matrices A and B to the identity.

2. Fork := lton: Set 8§ := \/2?:& 22; endfor. Set? = $1.Fork = lton: 3 := Zp [t Sp := 8/, endfor.

3. Compute the 2 X {72 — 1) matrix H as follows:
Fori := lton: for § := ¢ 4+ lton- 1: set Hy; := 0; endfor; if§ < n — Lthenset Hy; := 8341/ 85 for § 1= Ltoi-1: set Hy = —y;yj/(sjsﬂl); endfor; endfor.
4. Perform full reduction on H, simultaneously updating %, A and B:

Fort := 2ton:for  := % — lto1step-1:1 = nint(H;j/Hjj); Y; o= Y; + Yy fork := ltoj: Hy := Hyp — tH g endfor; for k = ltom: Ay i= Ay — tA;, By i= By, + tByy; endfor;
endfor; endfor.

Repeat until precision is exhausted or a relation has been detected:

1. Select m such that *| H ;| is maximal when i = m.

2. Exchange entries m and m + 1 of y, corresponding rows of A and H, and corresponding columns of B.

3. If m < n — 2 then update H as follows:

Setlp := \/H,%m - Ha,,m+1, t = Hm.m/to and 19 = Hm,.m+1/fg. Then for? := mton: 13 = Hyy,, 14 = Hypqq) Hy i= titg + 1oty Hippq = —tot3 + t114; endfor.

4. Perform block reduction on H, simultaneously updating %, A and B:

For? := m + lton: for  := min(z' —1,m+ l)to 1step-1:1 := nint(H;j/Hjj); Y; = Y; +typfork := ltoj: Hy = Hy — tH;p; endfor; fork := lton:
A;k — A.;;, — fAjk, Bkj — B;,j + fBH; endfor; endfor; endfor.

5. Norm bound: Compute M = l/ max; |H F |, where H ; denotes the j-th row of H. Then there can exist no relation vector whose Euclidean norm is less than M.

6. Termination test: If the largest entry of A exceeds the level of numeric precision used, then precision is exhausted. If the smallest entry of the y vector is less than the detection threshold, a relation has been detected
and is given in the corresponding column of B.



mpmath.pslq()

The pseudocode is relatively straightforward, but note the indices start from
1 and not 0. There Is also another catch:

“If one wishes to recover a relation of length n, with coefficients of maximum
size d digits, then the input vector x must be specified to at least nd digits,
and one must employ nd-digit floating-point arithmetic.”

To save myself some trouble: I’'m just going to use the algorithm as
iImplemented in the mpmath library



Application: identifying algebraic numbers

Given a number a, let x = (1,a, ..., a"). An integer relation m for x would
mean that a is a root to the polynomial m, + m;a + ...m a" = 0 so for

simple enough polynomials, an expression for & can be deduced

Demo: identify 3.65028154



Solution

0=—-9+ 14a° — a*

24/10 +7

—



Application: Euler-Mashceroni constant

This constant is the limiting difference between the harmonic series and
natural log

It is not known whether or not this is an algebraic number, or even if it Is
rational. With careful attention to precision, it can be checked with PSLQ

that it is not the root of any integer polynomial of degree n, where you can
try as large n as your machine can handle



Application: a new formula for pi

The formula

2 1 1
3i+4 8i+5 8i+6

was found with PSLQ and subsequently proved. It can be shown that this
can be used to compute the nth digit of pi in hexadecimal without having to
compute the previous n — 1 digits



Application: a new formula for pi

Found by looking for an integer relation for x = (X, ..., Xg, m) where

-~ 1
X =
/ kgo 165(8k + f)



Summary

PSLQ:

* |s an algorithm which either finds integer relations or bounds for possible
relations

e |[s commonly used in number recognition routines

* has led numerous “discoveries,” notably a new formula for &, but also
other more technical discoveries that were not covered here

We also went over how to “use” PSLQ, paying attention to the behavior of
the “error” over time, as well as the precision used



Summary
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Number Recognition

A core activity in exploratory experimental mathematics is recognition of numbers: going backward from a number to find out how it can be generated. The Wolfram
Language provides tools for recognizing many classes of numbers, including a number of original algorithms.

Primes = Algebraics = Rationals = Integers

Element — test whether a number is in a given class

Rationalize — find a rational approximation

ContinuedFraction = Convergents

RootApproximant — find an approximating algebraic number

ToRadicals = RootReduce = MinimalPolynomial

FindIntegerNullVector — find vector {a1, ...} such thata; x; + a2 X2 + === + @ X, = 0

LatticeReduce — find reduced basis vectors in a lattice

FunctionExpand — reduce an exact numeric expression to simpler functions

PrimeQ — recognize prime numbers
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