
PSLQ
Kevin Ly

AIG

Disclaimer

PSLQ was picked as a top 10 algorithm by two editors of CiSE. Their words:
“We tried to assemble the 10 algorithms with the greatest influence on the
development and practice of science and engineering in the 20th century.”

Some others that made the cut: Monte Carlo methods (Neumann, Ulam,
Metropolis), decompositions in matrix computations (Householder),
Quicksort (Hoare), FFT (Cooley and Tukey)

• What is PSLQ?

• How does it work? (briefly)

• Why does it work?

• Applications / demos

What is PSLQ?

PSLQ is an algorithm for finding integer relations. Given a vector
, an integer relation for (if it exists) is an integer vector

 such that

Specifically, each iteration of PSLQ produces a lower bound on the norm
for all possible integer relations

x = (x1, …, xn) x
m = (m1, …, mn) ∑

i

ximi = 0

|m |

Wait…isn’t that easy?

Just generate a vector orthogonal to and rescale it until you have integers?

Suppose (1, 3.65028154, 13.32455532, 48.63837831, 177.54377448).
One orthogonal vector is (3.65028154, -1, 0, 0, 0). Rescale it to
(182513077, 50000000, 0, 0, 0), and there’s your integer relation!

But…is there a smaller one?

PSLQ attempts to find the smallest integer relation, up to some precision

x

x =
xo = m =

excerpt and figure from Bailey & Borwein, PSLQ: An Algorithm to Discover Integer Relations

“PSLQ operates by
constructing a sequence of
integer-valued matrices

that reduces the vector
, until either the

relation is found (as one of
the columns of), or else
precision is exhausted.”

Bn

y = xBn

Bn

Pseudocode

mpmath.pslq()

The pseudocode is relatively straightforward, but note the indices start from
1 and not 0. There is also another catch:

“If one wishes to recover a relation of length , with coefficients of maximum
size digits, then the input vector must be specified to at least digits,
and one must employ -digit floating-point arithmetic.”

To save myself some trouble: I’m just going to use the algorithm as
implemented in the mpmath library

n
d x nd

nd

Application: identifying algebraic numbers

Given a number , let . An integer relation for would
mean that is a root to the polynomial so for
simple enough polynomials, an expression for can be deduced

Demo: identify 3.65028154

α x = (1,α, …, αn) m x
α m0 + m1α + …mnαn = 0

α

Solution

0 = − 9 + 14α2 − α4

⟹ α = 2 10 + 7

Application: Euler-Mashceroni constant

This constant is the limiting difference between the harmonic series and
natural log

It is not known whether or not this is an algebraic number, or even if it is
rational. With careful attention to precision, it can be checked with PSLQ
that it is not the root of any integer polynomial of degree , where you can
try as large as your machine can handle

γ ≡ lim
n→∞ (−log n +

n

∑
k=1

1
k)

n
n

Application: a new formula for pi

The formula

was found with PSLQ and subsequently proved. It can be shown that this
can be used to compute the th digit of pi in hexadecimal without having to
compute the previous digits

π =
∞

∑
i=0

1
16i (4

8i + 1
−

2
8i + 4

−
1

8i + 5
−

1
8i + 6)

n
n − 1

Application: a new formula for pi

Found by looking for an integer relation for where

x = (X1, …, X8, π)

Xj ≡
∞

∑
k=0

1
16k(8k + j)

Summary
PSLQ:

• is an algorithm which either finds integer relations or bounds for possible
relations

• is commonly used in number recognition routines

• has led numerous “discoveries,” notably a new formula for , but also
other more technical discoveries that were not covered here

We also went over how to “use” PSLQ, paying attention to the behavior of
the “error” over time, as well as the precision used

π

Summary

References

• Bailey and Borwein, PSLQ: An Algorithm to Discover Integer Relations,
from Bailey’s personal website

• Ferguson, Bailey, and Arno, Analysis of PSLQ, an integer relation finding
algorithm (1999)

• Pseudocode (courtesy of Bailey): http://www.cecm.sfu.ca/organics/
papers/bailey/paper/html/node3.html

• mpmath: http://mpmath.org

http://www.cecm.sfu.ca/organics/papers/bailey/paper/html/node3.html
http://www.cecm.sfu.ca/organics/papers/bailey/paper/html/node3.html
http://www.cecm.sfu.ca/organics/papers/bailey/paper/html/node3.html
http://mpmath.org

