Page ranking pages and Beyond

Alexander Munoz 28 March 2017 Algorithms Interest Group

Outline

- High-level description
- Low-level Description
- Examples
- Google's Synthesis
- Applications

High-Level

- Pagerank solves a system of "score" equations
- Yields a probability distribution that a person randomly clicking links will arrive at a particular page

High-Level

- Google interprets a link from page A to page B as a vote by page A for page B
- However, not all votes are equal
- The rank (importance) of a webpage gets factored in — high ranked votes weigh more heavily

Random-Surfer Model

- Probability that a random surfer clicks on a link is given by the number of links on a page
- The probability of reaching a page is the sum of probabilities for the surfer followings links to the page
- Introduce a damping factor which gives a chance to jump to another page at random — minimum Pagerank

- Within a network, we can calculate the Pagerank of a particular page
- Say page A has pages T₁...T_n pointing to it and we have links going out of page A classified as C(A):

$$PR(A) = (1 - d) + d \left[\frac{PR(T_1)}{C(T_1)} + \dots + \frac{PR(T_n)}{C(T_n)} \right]$$

- PR can be calculated using a simple iterative algorithm
- PR corresponds to the principal eigenvector of the normalized link matrix — we can calculate PR without knowing the final PR values of other pages
- Computation can be done iteratively or algebraically — Power method

• Iterative: $PR(p_i, 0) = \frac{1}{N}$

$$PR(p_i, t+1) = \frac{1-d}{N} + d \sum_{p_j \in M(p_i)} \frac{PR(p_j, t)}{L(p_j)}$$
$$R(t+1) = d\mathcal{M}R(t) + \frac{1-d}{N}1$$
where $\mathcal{M} = \frac{1}{L(p_j)}$ Converges when:

 $|R(t+1) - R(t)| < \epsilon$

 Algebraically: as t goes to infinity

$$R = d\mathcal{M}R + \frac{1-d}{N}\hat{1}$$

The solution is given by

$$R = (\mathbb{I} - d\mathcal{M})^{-1} \frac{1 - d}{N}\hat{1}$$

• The previous calculations yield the same Pageranks if their results are normalized:

$$R_{power} = \frac{R_{iter}}{|R_{iter}|} = \frac{R_{alg}}{|R_{alg}|}$$

 Quick demonstration PR(A)=0.5+0.5*PR(C) PR(B) = 0.5+0.5*(PR(A)/2) PR(C) = 0.5+0.5(PR(A)/2+PR(B))

 Iteration 	PR(A)	PR(B)	PR(C)
• 0	1	1	1
• 1	1	0.75	1.125
• 2	1.0625	0.765625	1.1484375
• 3	1.07421875	0.76855469	1.15283203
• 4	1.07641602	0.76910400	1.15365601
• 5	1.07682800	0.76920700	1.15381050
• 6	1.07690525	0.76922631	1.15383947
• 7	1.07691973	0.76922993	1.15384490
• 8	1.07692245	0.76923061	1.15384592
• 9	1.07692296	0.76923074	1.15384611
• 10	1.07692305	0.76923076	1.15384615
• 11	1.07692307	0.76923077	1.15384615
• 12	1.07692308	0.76923077	1.15384615

- Add new pages to your website in a semiintelligent way
- Swap links with websites which have high Pageranks
- Raise the number of inbound links (Advertising)

- When you add a new page to your site, link it to the front page
- You can reduce your front page's Pagerank by making circular references in your website

Average PR: 1.000

These manipulations are not enough — create good content instead

- Ranking of webpages in Google was determined by three factors
 - -Page specific factors
 - -Anchor text of inbound links
 - -Pagerank
- Measuring an inbound link's potential for pointing the correct information

"Calculating derivatives in **three dimensions**" vs. "**Calculating derivatives** in three dimensions"

- Specific factor examples

 Domain registration length
 Penalize WhoIs Owner spammers get punished
 Keyword in title tag
 Keyword density
 Page loading speed via HTML
 Outbound link theme
 Reading level
- Many, many more factors: social signals, domain factors, page factors, algorithm rules, backlink factors...

- In order to provide search results, Google computes an IR score from the first two components
- Pagerank multiplied with the IR score yields the general importance of the page

Order	Google	Yahoo!	MSN	
1	www.starbucks.com (\diamond)	www.gevalia.com (\diamond)	www.peets.com (*)	
2	www.coffeereview.com (†)	en.wikipedia.org/wiki/Coffee (\triangle)	en.wikipedia.org/wiki/Coffee (\triangle)	
3	www.peets.com (*)	www.nationalgeographic.com/coffee	www.coffeegeek.com (*)	
4	www.coffeegeek.com (*)	www.peets.com (*)	coffeetea.about.com (\triangle)	
5	www.coffeeuniverse.com (†)	www.starbucks.com (\diamond)	coffeebean.com	
6	www.coffeescience.org	www.coffeegeek.com (*)	www.coffeereview.com (†)	
7	www.gevalia.com (\diamond)	coffeetea.about.com (Δ)	www.coffeeuniverse.com (†)	
8	www.coffeebreakarcade.com	kaffee.netfirms.com/Coffee	www.tmcm.com	
9	https://www.dunkindonuts.com	www.strong-enough.net/coffee	www.coffeeforums.com	
10	www.cariboucoffee.com	www.cl.cam.ac.uk/coffee/coffee.html	www.communitycoffee.com	
Approximate Number of Results: 447,000,000 15		151,000,000	46,850,246	
Shared results for Google, Yahoo!, and MSN (*); Google and Yahoo! (◊); Google and MSN (†); and Yahoo! and MSN (△)				

- Ecology Food Webs
- Uses cyclical elements Animal to detritus to plants to Animal
- How does the loss of a species cascade? Measure the importance of the species

- Recommendation Systems e.g. Netflix
- User identifies what they like
- A movie is *relevant* for me if other *similar* people liked it and

A person is *similar* to me if they like movies that are *relevant* to me

$$rel(m) = \sum_{individuals \ i \ who \ liked \ m} \frac{sim(i)}{number \ of \ movies \ i \ liked}$$
$$sim(i) = \sum_{movies \ m \ which \ i \ liked} \frac{rel(m)}{number \ of \ people \ who \ liked \ m}$$

• Whenever user u likes product m, we draw two edges, one from node u to m and the other one from node m to u

League of Legends Balance Analysis

 $w_{i \rightarrow j} = (\text{popularity}) \times (\text{winrate})$

• League of Legends Balance Analysis

Conclusion

- Pagerank is a simple algorithm which gives rise to a fair amount of complexity
- Pagerank-type algorithms have developed to build descriptions of a wide range of phenomena

Bibliography

- <u>https://en.wikipedia.org/wiki/PageRank</u>
- Examples and Principles: <u>http://www.cs.princeton.edu/</u> ~chazelle/courses/BIB/pagerank.htm
- Larry Page: <u>http://ilpubs.stanford.edu:</u> 8090/422/1/1999-66.pdf
- Google specifics: <u>https://prchecker.net/how-pagerank-is-used-in-google-search-engine-application.html</u>
- Application: <u>http://journals.plos.org/ploscompbiol/article?</u> id=10.1371/journal.pcbi.1000494