
Exploring Stochastic Gradient Descent 
and its Modifications

1

Kevin Kleiner 
Algorithm Interest Group on March 22, 2021



Model Fitting and Optimization
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• From linear models to neural networks, here are some problems which call for model fitting 

1. Crystal structures and respective optical properties 

2. Time series of relative positions of celestial objects 

3. Time series of many companies' stock prices

Collected training data Optimized model

1. Structure-property relationships to inform design 

2. Planetary trajectories to inform mapping 

3. Stock predictions to inform investing

Which model fitting problems have you 
encountered in your work?



Model Fitting and Optimization
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• All these models involve “weights” that should correctly map the inputs to an output 

• We need a rigorous, systematic method to determine the “best possible” model weights

Animation from: https://hackernoon.com/visualizing-linear-regression-with-pytorch-9261f49edb09



Optimize Model Weights with Gradient Descent

4

wt+1 = wt − η∇wt
L({xi, yi}; wt)

Weights at 
iteration t + 1

Weights at 
iteration t

Step size: 
0 < η < 1

Loss 
function

Set of all 
observations/
training data

• Introducing the most popular approach,

LLS({xi, yi}; wt) ≡ ∑
i

( ̂yi(xi; wt) − yi)2

Least squares 
loss function

Model-predicted  
using  and 

y
x wt

L



Each Gradient Evaluation can be Expensive
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Gradient operates 
on all  residual 
functions

N

∇wt
L = ∇wt

( ̂y1(x1; wt) − y1)2 + ∇wt
( ̂y2(x2; wt) − y2)2 + ⋯ + ∇wt

( ̂yN(xN; wt) − yN)2

• Say we want to fit a linear model  to  data pointŝy = w0 + w1x1 + w2x2 + ⋯ + wNxN N ∼ 106

Derivatives 
with respect to 
all  weightsN

• How can the weights be updated more frequently, while still converging to the correct loss minimum? 

• Consider a slight modification to improve scaling and see how the optimization behavior changes



Stochastic Gradient Descent Enables Faster Evaluations
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wt+1 = wt − η∇wt
Li(xi, yi; wt)

LLS,i(xi, yi; wt) ≡ ( ̂yi(xi; wt) − yi)2

• Instead of updating weights with , update them with  

• This simplified loss function only depends on one randomly chosen observation 

∇wt
L({xi, yi}; wt) ∇wt

Li(xi, yi; wt)

(xi, yi)

Each red update is much, much faster than 
each black update, and both paths should 
converge to roughly the same point

Image from: David Macedo PhD Thesis 2017 



SGD Updates are too Sensitive to Individual Data
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• So weight optimization trajectory becomes very noisy, especially after the beginning 

• We now want to reduce the SGD noise without returning to GD scaling

• Replace  with  

•  is a random mini-batch of data points

∇wt
Li(xi, yi; wt) ∇wt

L({xi, yi}MB; wt)

{xi, yi}MB

Mini-Batch Stochastic Gradient Descent

Image from: https://towardsdatascience.com/gradient-descent-algorithm-and-its-variants-10f652806a3 



Break: Demonstrate Previous Methods in Live Demo
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Using height-weight data from Kaggle: 

https://www.kaggle.com/mustafaali96/weight-height



Modifications Beyond Mini-Batch SGD
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• Further modifications become problem-dependent, which requires knowing the data well 

• Suppose the weight optimization still experiences difficulties:

1. Convergence to an undesired local minimum - depends on loss function shape 

2. Noisy zig-zag updates - depends on redundancies or bias in the data

• A common solution is introducing “momentum”

S. Ruder, et al., arXiv:1609.04747 (2017). 



Mini-Batch SGD with Momentum
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wt+1 = wt − vt

vt = αvt−1 + η∇wt
L({xi, yi}MB; wt)

• Update not only the weights, but also a “weight velocity” 

• Analogous to a velocity-dependent damping force in Newton’s laws

1. Speeds up only the updates heading towards the minimum 

2. Pushes updates out of possible traps

S. Ruder, et al., arXiv:1609.04747 (2017). 



Visual Schematic of SGD with Momentum
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vt = αvt−1 + η∇wt
L({xi, yi}MB; wt) wt+1 = wt − vt

Image from: https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c 



Visual Schematic of SGD with Momentum Cont.
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vt = αvt−1 + η∇wt
L({xi, yi}MB; wt) wt+1 = wt − vt

Image from: https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c 



Sometimes SGD with Momentum Still Isn’t Enough
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Let’s see why these 
other methods help

Example: logistic 
regression on the 
noisy moons dataset 
in scikit-learn

• If the loss function has a deep valley, our previous methods don’t work

Animation from: http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html 



Including Adaptive Step Sizes
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L → L({xi, yi}MB; wt − αvt−1)

η0 →
η0

∑t
t̃=1 (∇wt̃

L)2 + ϵ

Replaces Adagrad sum 
with weighted average

Animation from: http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html 



Connecting Back to Model Accuracy

15
Animation from: http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html 



Conclusions: Zoo of Optimization Methods
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Method Advantage Disadvantage

GD Least noisy updates Expensive gradient 
evaluations

SGD Cheap gradient 
evaluations Most noisy updates

Mini-Batch SGD Cheap gradient 
evaluations

Moderately noisy 
updates

SGD + Momentum More traversal in 
desired direction 

Unreliable in non-
convex terrains

Adagrad and 
Beyond

Self-corrected step 
sizes

Step sizes vanish after 
a while

• When confronted with a model fitting problem with lots of data, choose an optimization method by assessing: 

1. Wether it can reliably converge to a loss minimum 

2. How long it takes to converge 

3. What path it takes through the loss function terrain



Short Overview Video on Optimizers
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“Optimizers - EXPLAINED!” by CodeEmporium

https://www.youtube.com/watch?v=mdKjMPmcWjY

