
Exploring Stochastic Gradient Descent
and its Modifications

1

Kevin Kleiner
Algorithm Interest Group on March 22, 2021

Model Fitting and Optimization

2

• From linear models to neural networks, here are some problems which call for model fitting

1. Crystal structures and respective optical properties

2. Time series of relative positions of celestial objects

3. Time series of many companies' stock prices

Collected training data Optimized model

1. Structure-property relationships to inform design

2. Planetary trajectories to inform mapping

3. Stock predictions to inform investing

Which model fitting problems have you
encountered in your work?

Model Fitting and Optimization

3

• All these models involve “weights” that should correctly map the inputs to an output

• We need a rigorous, systematic method to determine the “best possible” model weights

Animation from: https://hackernoon.com/visualizing-linear-regression-with-pytorch-9261f49edb09

Optimize Model Weights with Gradient Descent

4

wt+1 = wt − η∇wt
L({xi, yi}; wt)

Weights at
iteration t + 1

Weights at
iteration t

Step size:
0 < η < 1

Loss
function

Set of all
observations/
training data

• Introducing the most popular approach,

LLS({xi, yi}; wt) ≡ ∑
i

(̂yi(xi; wt) − yi)2

Least squares
loss function

Model-predicted
using and

y
x wt

L

Each Gradient Evaluation can be Expensive

5

Gradient operates
on all residual
functions

N

∇wt
L = ∇wt

(̂y1(x1; wt) − y1)2 + ∇wt
(̂y2(x2; wt) − y2)2 + ⋯ + ∇wt

(̂yN(xN; wt) − yN)2

• Say we want to fit a linear model to data pointŝy = w0 + w1x1 + w2x2 + ⋯ + wNxN N ∼ 106

Derivatives
with respect to
all weightsN

• How can the weights be updated more frequently, while still converging to the correct loss minimum?

• Consider a slight modification to improve scaling and see how the optimization behavior changes

Stochastic Gradient Descent Enables Faster Evaluations

6

wt+1 = wt − η∇wt
Li(xi, yi; wt)

LLS,i(xi, yi; wt) ≡ (̂yi(xi; wt) − yi)2

• Instead of updating weights with , update them with

• This simplified loss function only depends on one randomly chosen observation

∇wt
L({xi, yi}; wt) ∇wt

Li(xi, yi; wt)

(xi, yi)

Each red update is much, much faster than
each black update, and both paths should
converge to roughly the same point

Image from: David Macedo PhD Thesis 2017

SGD Updates are too Sensitive to Individual Data

7

• So weight optimization trajectory becomes very noisy, especially after the beginning

• We now want to reduce the SGD noise without returning to GD scaling

• Replace with

• is a random mini-batch of data points

∇wt
Li(xi, yi; wt) ∇wt

L({xi, yi}MB; wt)

{xi, yi}MB

Mini-Batch Stochastic Gradient Descent

Image from: https://towardsdatascience.com/gradient-descent-algorithm-and-its-variants-10f652806a3

Break: Demonstrate Previous Methods in Live Demo

8

Using height-weight data from Kaggle:

https://www.kaggle.com/mustafaali96/weight-height

Modifications Beyond Mini-Batch SGD

9

• Further modifications become problem-dependent, which requires knowing the data well

• Suppose the weight optimization still experiences difficulties:

1. Convergence to an undesired local minimum - depends on loss function shape

2. Noisy zig-zag updates - depends on redundancies or bias in the data

• A common solution is introducing “momentum”

S. Ruder, et al., arXiv:1609.04747 (2017).

Mini-Batch SGD with Momentum

10

wt+1 = wt − vt

vt = αvt−1 + η∇wt
L({xi, yi}MB; wt)

• Update not only the weights, but also a “weight velocity”

• Analogous to a velocity-dependent damping force in Newton’s laws

1. Speeds up only the updates heading towards the minimum

2. Pushes updates out of possible traps

S. Ruder, et al., arXiv:1609.04747 (2017).

Visual Schematic of SGD with Momentum

11

vt = αvt−1 + η∇wt
L({xi, yi}MB; wt) wt+1 = wt − vt

Image from: https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c

Visual Schematic of SGD with Momentum Cont.

12

vt = αvt−1 + η∇wt
L({xi, yi}MB; wt) wt+1 = wt − vt

Image from: https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c

Sometimes SGD with Momentum Still Isn’t Enough

13

Let’s see why these
other methods help

Example: logistic
regression on the
noisy moons dataset
in scikit-learn

• If the loss function has a deep valley, our previous methods don’t work

Animation from: http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html

Including Adaptive Step Sizes

14

L → L({xi, yi}MB; wt − αvt−1)

η0 →
η0

∑t
t̃=1 (∇wt̃

L)2 + ϵ

Replaces Adagrad sum
with weighted average

Animation from: http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html

Connecting Back to Model Accuracy

15
Animation from: http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html

Conclusions: Zoo of Optimization Methods

16

Method Advantage Disadvantage

GD Least noisy updates Expensive gradient
evaluations

SGD Cheap gradient
evaluations Most noisy updates

Mini-Batch SGD Cheap gradient
evaluations

Moderately noisy
updates

SGD + Momentum More traversal in
desired direction

Unreliable in non-
convex terrains

Adagrad and
Beyond

Self-corrected step
sizes

Step sizes vanish after
a while

• When confronted with a model fitting problem with lots of data, choose an optimization method by assessing:

1. Wether it can reliably converge to a loss minimum

2. How long it takes to converge

3. What path it takes through the loss function terrain

Short Overview Video on Optimizers

17

“Optimizers - EXPLAINED!” by CodeEmporium

https://www.youtube.com/watch?v=mdKjMPmcWjY

