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Clustering

Cluster analysis is a type of unsupervised learning,
where given unlabeled data you attempt to interpret
the correlations in the data and identity clusters of

similar data points.

Toy example in 2D:
3 Gaussian clusters
1 ring cluster




k-means

One of the most common clustering
algorithms. Simple, iterative, heuristic,

greedy. T
o
Idea: Group points into k clusters. |
Compute the centers of the clusters and L EE
assign points to the cluster with the RN
closest center. N Rt _.* +T
Algorithm: "e'a"°“#°

1. Initialize cluster centers randomly.

2. Assign points to cluster with nearest Note: clustering is based

center. on distances. Not always
3. Recompute center of clusters. useful.

4. Repeat 2 and 3 until converged. Source: Wikipedia




k-means
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Distances do not capture all of the
cluster information.




Spectral clustering

A clustering algorithm based on spectral embedding.
Simple and based on linear algebra.

Idea: Use a kernel K;; = K(s;, sj) (similarity measure)
between points s; € R to embed the data into a
new vector space. Perform k-means in the new space.

Algorithm:
1. Compute the graph Laplacian L = D - K.
2. Find the k lowest eigenvectors of L.
3. Embed the data into a k-dim space defined by
the rows of these eigenvectors.
4. Perform k-means clustering on the embedded
data.




Graph Laplacian
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The graph LaplacianisL =D — K



Graph Laplacian properties

1. For any vector v,

2 (Modified inner product
UTLU = ZU Kl] (Ui — U]) /2 weighted by the kernel.)

2. L is symmetric and positive-semi definite, so has
non-negative eigenvalues.

3. There is zero eigenvalue eigenvector of L that is
the vector of allones: 1 = (1,1, ..., 1).

(If there are disjoint components 44, ..., A,
in the graph, then 1, ,...,14_are all zero

eigenvalue eigenvectors.)




Graph Laplacian (revisited)

The graph LaplacianisL =D — K

(2 —1 0 -1 0 O0)
0 -1 0 0
I 0 0 1 0 -1 0
-1 -1 0 2 0 0
0 -1 0 1 0 K12
\0 0 0 0 0 0

It has three zero eigenvalue eigenvectors:

T
V1 X (1 1 01 0 O)
Intuitively, these correspond to
clusters connected by the K
X (0 O 1 0 1 O) matrix. Roughly the same picture

holds when we perturb K so that
T its entries are not all 1’s and 0’s.
v3c (00 0 0 0 1)




Kernels

Rather than using adjacency matrices with Os and
1s, we define our graph with edge weights given
by the kernel Kj;.

The kernel used in spectral clustering is picked
empirically.

The most common kernel is the Gaussian (radial,
or heat) kernel

2
Kij = K(si,57) = e~ lsimsil /2%
but it has an arbitrary parameter o that needs to
be tuned by hand.




Toy example
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Look at k smallest eigenvalues of L



Toy example (results)
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MNIST example
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MNIST: Dataset of images

of handwritten digits used

as a benchmark in many
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ML problems.
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Spectral embedding

Spectral embedding is a way to embed data s; € R into a space
spanned by k vectors 74 (s;), ..., T, (s;) € R%. These vectors are
chosen to minimize the distance between highly similar data

points according to the kernel K(Si, Sj):

E(r)= )  K(sis)|lr(si) — 7(s5)II”

2,J=1

k
=2 Z I Lt,
a=1

To minimize this objective function, we choose 7,(s;) = v ;
where v, are the k lowest eigenvectors of L.




