Focusing

Autofocusing

Focus functions

Demonstratio

Summary

Automatic focus of cameras Principles and a demonstration

Juha Tiihonen

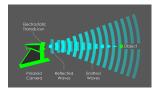
Algoritms interest group

November 25, 2016

Summary

Focusing your camera

Interactive applet of AF motorics (Phase & contrast detection): https://graphics.stanford.edu/courses/cs178/applets/autofocusPD.html


Focusing

Focus functions

Demonstration

Summary

The problem of autofocusing

Active

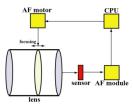
- Sonar
- Infrared

Find distance to the object by triangulation.

Passive

- Phase detection
- Contrast detection

Find optimal focus distance *s* by post-processing:


 $s = \operatorname{argmax}[F(A, s)],$

where F is a focus function and A is $M \times N$ -bitmap of the active area

Demonstration

Summary

Algorithms in auto-focus

Algorithm involving questions

- Where to focus? Target finding? Depth-of-the-field?
- Is it in focus? Focus distance?
- How to focus fast?
- How to keep the focus in a moving object?

Summary

Different focus functions

Pick one:

- Vollath's F4 and F5
- Log-Histogram
- Gaussian filter
- Energy of the image Laplacian
- Variance of the image
- Energy of the image
- Threshold
- Weighted histogram
- Hu's moments
- Tenengrad
- Absolute Tenengrad
- Discrete Cosine transformation (DCT)
- Midfrequency-DCT
- Total variation

Features

- Accuracy
- Speed
- Computational cost
- Robustness
- Ease of implementation
- ...

Different focus functions

Suppose a $M \times N$ bitmap A of the active area, now g(i,j) is the gray value at (i,j) and \overline{g} is the global average of g.

Variance of the image (VAR)

$$F_{var} = \frac{1}{MN} \sum_{i=1}^{M} \sum_{j=1}^{N} \left(g(i,j) - \bar{g} \right)^2,$$
(1)

Vollath's F5¹ (F5)

$$F_{voll} = \sum_{i=1}^{M-1} \sum_{j=1}^{N} g(i,j) \cdot g(i+1,j) - MN\bar{g}^2,$$
(2)

Midfrequency Discrete Cosine Transform² (MDCT)

¹D. Vollath, 1987, DOI: 10.1111/j.1365-2818.1988.tb04620.x

²S. Lee et al, 2008, DOI: 10.1109/TCSVT.2008.924105

Summary

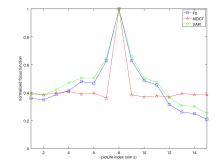
Try this at home

Idea

- Setup target at distance x
- Take T pictures at different focus distances *s*
- Digitize and convert to bitmap
- Crop to the active area (M-by-N matrix)
- Compute focus function *F* for each picture
- Choose optimal $s = \operatorname{argmax}(F(s))$

1 1 1 1 1 1 1 1 1 1 1 1 1 1

Implementation


- x ∼ 1.0m
- *T* = 15
- Load JPEG:s to GNU Octave
- *M* = 100, *N* = 100 right at the center of the target

Demonstration

Summary

Computing focus functions

Notes and conclusions

- Small inconsistencies in aiming
- All functions agree on the max
- MDCT has the best contrast, but is the least linear

Summary

Summary

- Autofocus is an essential feature in optical imaging systems, such as cameras and microscopes
- Active AF is based on sensors, passive on image processing
- Different (passive) Focus functions exist, and here was a demonstration of Vollath's F5 and Variance of the image and Midfrequency Discrete cosine transformation
- Real-time AF system is often a proprietary combination of these technologies

