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The problem

An unknown disease, SARS-COV-2, rapidly spreads across the
planet. Its symptoms are unknown; its incubation and
infectiousness periods are unknown; its severity is unknown.

How do we determine when to close borders?
How do we determine whether to build new hospitals?

How do we predict different mitigation strategies’ effectiveness?

What is the ideal partition of a population to limit/quench spread?




Outline

e Subgrid picture of disease spread

e “Standard” compartmental models

e Extensions to “standard” models (c.f. 1927)

e Parameter inference

e Model shortfalls (percolation regime,
heterogeneity)

e [Extension to a campus
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ITAS A > AND THEN ADD
SOME. SECONDARY TERMS To ACCOUNT FOR

\
EASY, RGHT?
)
50, WHY DOES - NEED
A WHOLE JoURNAL, ANYWAY?

(

LIBERAL-ARTS MAJORS MAY BE ANNOYING SOMETIMES,
BUT THERES NOTZ/NG MORE OBNOXIOUS THAN
A PHYSICIST FIRST ENCOUNTERING A NEW SUBJECT.



“Microscopic” system description

>10,000,000 individuals (lllinois) with different ages and pre-existing conditions

Individuals interact with each other according to time-dependent social network

Each node is a
person, each edge
IS an interaction




“Microscopic” system description

>10,000,000 individuals (lllinois) with different ages and pre-existing conditions
Individuals interact with each other according to time-dependent social network

Infectious individuals emit viral quanta according to activity state

Table 3 — Quanta emission rates (ER,) for a SARS-CoV-2 infected asymptomatic subject (c,=108 copies mL?)
as a function of the activity level and respiratory activity.

Activity level Respiratory activity
Voiced counting Whispered counting Speaking Breathing Avg
Resting 49.9 12.1 320 10.5 98.1
Standing 74.8 18.1 480 15.7 147
Light exercise 161 39.1 1.03x103 33.9 317

Buonanno+ 2020



“Microscopic” system description

>10,000,000 individuals (lllinois) with different ages and pre-existing conditions
Individuals interact with each other according to time-dependent social network

Infectious individuals emit viral quanta according to activity state

Quanta spread according to air flow patterns

Ventilation
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“Microscopic” system description

>10,000,000 individuals (lllinois) with different ages and pre-existing conditions
Individuals interact with each other according to time-dependent social network
Infectious individuals emit viral quanta according to activity state

Quanta spread according to air flow patterns

—— <65 years (n=79)
— >65 years (n=15)

Different disease progression per individual

Ct value

>40 —l : - : \;: . : T :‘ - " T T - 1
0 7 14 21 28
Days since symptom onset
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Standard compartmental models
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city

Real-world outbreaks are not smooth. Random
noise is involved. Recast dynamical equations as
stochastic differential equations, and use the
Gillespie algorithm to produce trajectory.

1.  Write reaction as rate = 1/time — timestep

2. Setdt=-log(1-X)/rate, Xa R.U.V.in (0,1)

** extra details for systems with multiple reactions

Nachbar 2020
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Standard compartmental models: the problem

Question: Since the differential equations do not
transition individuals from left state to the right state,
What is the distribution of “time spent” in a state?

Answer: exponential distribution!

Does not reflect the real world, which has reported
latent/infectiousness profiles ~gamma distributions
(e.g., Linton+ 2020)
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Standard compartmental models: a solution

Just add compartments to the model! Rates
between compartments will be exponential, but
the convolution of exponentials will be an
Erlang distribution.

5 3 3 5 3
o momn
U A WN -
n n T n

Internal/parallel nodes can effectively produce
any distribution you want (Hurtado+ 2019).

** related to the “exposed” compartment. @_'@ » @fg%%
11

Skottfelt+ 2014



Standard compartmental models: a solution?
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Introducing Non-markovian models

The basic timing problem with compartment models comes from the fact that
individuals do not know how long they have been in a state.

Fix: swap “single number” compartment populations for functions of time, i.e.,
swap differential equations for integro-differential equations.

** actually an integral equation shown here

?((;)) zm; gzm / dr Kserial(T)jm (t — 7_)

Kermack—McKendrick theory (1927, 1932, 1933) 3

7i(t) = Ry




Introducing Non-markovian models
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Calibrating the model to data

Data come primarily fromthe ~ ~ ¥

healthcare system, so must ’L _______

relate infected to symptomatic,
to hospitalized, and so on

Recovered
(discharged)

Daily incidents

Model topology described by X ol Deaths, D(t)
figure to the right . m“‘;“:';
ICU, Cft) §oo

Dashed lines represent integral

equations (as in previous slide) Deaths, Dy (t)

(total)

15



Parameter inference

Find the model parameters that are most likely to produced observed data

. probability of data D
probability of parameters j given parameters 0
D

0 given data D

N

<= _ L(D|©)n(6)
POID) = == 5= T
Z(D)
/4 ) base likelihood of parameters
neglect — data does not (e.g., incorporate severity model)
change over calibration

Use Monte carlo Markov Chain to maximize p over 0
16



Examp

e calibration & correlation
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Early warning system
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Learn more

Model details (data sources,
calibration procedures and
comparisons, &c.) have been
published.

Especially see references!

Production code is public

https://github.com/uiuc-covid19-modeling/pydemic
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https://github.com/uiuc-covid19-modeling/pydemic

Modeling a university population

The mean-field model deals in effective parameters that approximate network
heterogeneity, mitigation/intervention measurements, changing timetables, ...

Unless the relationships between real world details and the effective parameters
are well understood, guessing parameter values begs the question.

Idea: explicitly treat known network structure ey Sek o Fidon)
(class schedules, number of restaurants, room
volumes, ...) and marginalize over uncertainty.

= use agent-based models Watts+ 1998

20



Agent-based model overview

Independently track location & infection state
of (40k) campus-bound students, faculty, staff

Include complete course schedule, estimate
out-of-class schedule

Compute ingested viral quanta based on
proximity

Set disease profiles based on literature
Simulate contact tracing by proximity

Simulate effects of quarantine and isolation

Netlogo, an off-the-shelf ABM simulator
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Agent-based modeling is hard

e Don’t know details of disease infectivity

e Don’t know (e.g.) airflow patterns in classrooms, bars, libraries, dorms...
e Don’t know effects of interventions

e Under-constrained model for “return to campus”

e Making sense of contact tracing data requires understanding infection

e Student social life (before & after COVID) under-constrained

e Hard to estimate compliance / failures of contact tracing

22



Agent-based modeling is hard
... but it Is necessary

e Produce multiple scenarios, marginalize over uncertainty, update model as
time goes by and more data is available

e Identify general warning trends
e Estimate effects of different mitigation strategies

e Exploration — understanding

Better is good.

23



Agent-based model: infection detail

e The world comprises zones, physical locations with volumes and airflow rates
e Each agent has a schedule that defines when to be in which zones

e Each agent has internal infection timers, that track disease progression

e If an agentis infected, they deposit viral quanta into zones as they move

e \iral quanta are localized and decay with time according to ventilation

e Aviral quantum is an infection probability

e Individuals are infected according to ingested viral quanta when leaving a zone

24



Agent-based model: mitigation detalil

e Explore size threshold for shift to online classes (remove classes from schedule)
e \Vary testing frequency per demographic

e Limit indoor population density (e.g., restaurants, bars, ...)

e Vary the contact tracing app adoption rate

e Effects of quarantinel/isolation compliance, threshold for sustainability

e Investigate effect of mask ordinances (in classrooms, libraries, buses, outside)

25



Agent-based model: data products
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simulated epidemic trajectories
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Agent-based model: contact tracing methods

Cost/benefit tradeoff between too many notifications (— ignored) and too few notifications
(— insufficient containment).

Explore effectiveness of forward- versus bidirectional contact tracing.
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Agent-based model: contact tracing methods

Minimizing the delay between identification and quarantine/isolation is crucial!

If delay > 2 days, contact tracing will not work.

ning contacts

% success in quaranti

3 days to isolation and contact quarantine

(manual contact tracing)

% success in isolating cases

Contact tracing fails

2 days to isolation and contact
quarantine

1dayto. *d contact
Que

no delay to isolation and col
(instantaneous contac!

% success in quarantining contacts

% success in isolating cases

% success in quarantining contacts

% success in isolating cases

% success in quara’  .ng contacts

% success in isolating cases

Ferretti+ 2020 28
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Agent-based model: results

Definitive plan is effective!

Unique New Cases are the first time an individual is detected COVID-19 positive by the SHIELD saliva test
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Thank youl!
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