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Compressive Sensing Take 2

Yubo “Paul” Yang, Algorithm Interest Group, Nov. 1 2019

See take 1 by Brian Busemeyer
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http://algorithm-interest-group.me/algorithm/Compressed-Sensing-Brian-Busemeyer
https://bbusemeyer.github.io/

What is compressive (compressed) sensing?

Compressive sensing is a signal processing technique to reconstruct sparse signal from few samples.

It solves a system of underdetermined linear equations by imposing sparsity as a constraint.

solve y = A x whenlen(y) < len(x) by minimizing the number of non-zero entries in x.

" . -

Trick: x has to be sparse.



Simplest example: random transform of a very sparse sample

Goal: use y with a small length to recover x

Strategy: minimize the L1-norm of x

# parse signal
X = np.zeros(nfull)

# signal in dense space
o random. seed ( )
{amat = np.random.randn(nfull, nfull)
y np.dot(x, amat)
# sample signal in dense space
nsamp =
idx = np.aranae(nfull)
isamp np.random.cholce{idx, nsamp,
y.samp y[isamp]
asamp amat|:, 1lsamp]

Xxarr = cs(asamp, ysamp)

x12 = np.linalg.lstsq(asamp.T, ysamp)[0]
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Practical application I: digital to analog conversion below Nyquist-Shannon

In practice, constructing the A matrix can be tricky.

Signal in time domain, use Fourier transform as A matrix.

# build FFT basis transformation
amat = []
for irow in range(nfull):

vec = np.zeros(nfull, dtype=complex)

matrix

vec[irow] =
row = np.fft.ifft(vec)
amat.append(row)

amat = np.array(amat)
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How many samples does it take?

nsin
Toy problem: reconstruct a sum of sine waves  y(t) = z sin(2r nt)

n=1

Number of samples needed for perfect reconstruction is determined by signal sparsity in “good” basis.
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F. Krzakala, M. Mezard, F. Sausset, Y.F. Sun, and L. Zdeborova, Phys. Rev. X 2, 021005 (2012).



How robust is CS to noise?

Reconstruction is robust up to 5% white noise.

Reconstruction noise does increase with more noise.

but error converges roughly at the same transition

sample density as before!

. —e— 5ig=0.20 Lol = | . "l .
| H
SI8 VI T
£ oot e (N
R
0- 3 — -’ |1 ' ‘

nsample/nsin

i




Why is compressive sensing useful?

Signal reconstruction while under-sampling (lower average freq. than Nyquist-Shannon)

Image reconstruction
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https://web.archive.org/web/20100605170550/http:/dsp.rice.edu/cscamera
https://www.sciencedirect.com/science/article/pii/S2215098616313684
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.113.185501

Practical application |I: image compression

In the spirit of Halloween, let us attempt a reconstruction of the Shepp-Logan phantom.

2D images, use wavelet transform as A matrix. pywt package provides forward and inverse transforms

Approximation Horizontal detail
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Practical application |I: image compression

My attempt: spooky?
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Application to Physics I: MD vibrational spectrum | = |
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Fig. 1. Frequency distribution spectrum of Na, calculated using FT and
CS for different total propagation times: (A) 100 fs, (B) 600 fs, and (C) 4,000 fs.

X. Andrade, J. N. Sanders, and A. Aspuru-Guzik, Proc. Natl. Acad. Sci. U. S. A. 109, 13928-13933 (2012).



Application to Physics Il: Lattice dynamics

P (I)abc

— ) _—ab . . .
V= Vo b Qatta + = ttaity + = ttampue +---. (1) force-displacement relationship for Eq. (1),

where u, = u,; 1s the displacement of atom a at a lattice

site R, in the Cartesian direction i, the second-order - _ _ / . ( )
ansion  coefficients — D) — 2V [ Foa= -0, — Pypup — Poapetpite/2 - 2

expansion  coefficients @, = ©;;(ab) = 07V /OuyOuy,

determine the phonon dispersion in the harmonic approxi-

ati , Do =D (b — BV /I e & . . . .

mation, and Pape = Pijlabe) = O°V/OugOundue. et The forces can be obtained from first-principles calcula-

are third- and higher-order anharmonic force constant ~ ]

tensors (FCTs). The linear term with @, is absent if the t1ONS USING any general-purp()se DFT code for a set of L
atomic configurations 1 a supercell. This establishes a

linear problem F = A® for the unknown FCTs, where

=1 —uy, —Fupul ]
A — (3)
(R

will be referred to as the sensing matrix. Its elements are

F. Zhou, W. Nielson, Y. Xia, V. Ozolins, Phys. Rev. Lett. 113, 18501 (2014).



Application to Physics Il: Lattice dynamics
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FIG. 3 (color online). Comparison of CSLD predictions with
DFT data for tetrahedrite: (a) force at 300 K, (b) relative energy
per formula unit of an unstable optical mode involving out-of-
plane displacements of trigonally coordinated copper atoms
(blue) bonded to sulfur (yellow sphere). DFT and CSLD are

shown as solid and dashed lines, respectively.

F. Zhou, W. Nielson, Y. Xia, V. Ozolins, Phys. Rev. Lett. 113, 18501 (2014).



Application to medical imaging: fast MRI

Fully sampled 6 X undersampled 6 X undersampled
classical CS

Trzasko, Manduca, Borisch (Mayo Clinic)

E. Candes, “Compressive Sensing — A 25 Minute Tour,” Frontiers of Engineering Symposium, Cambridge, UK (2010).



Conclusions
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