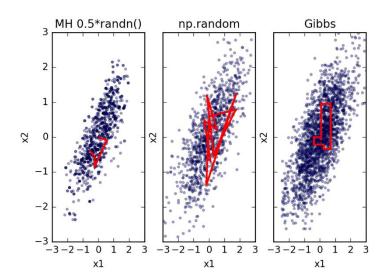
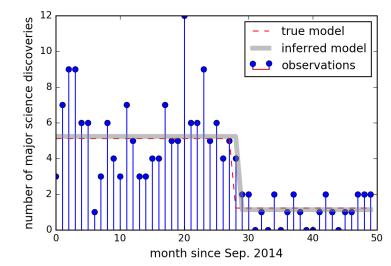
The Gibbs Sampling Algorithm: with Applications to Change-point Detection and Restricted Boltzmann Machine

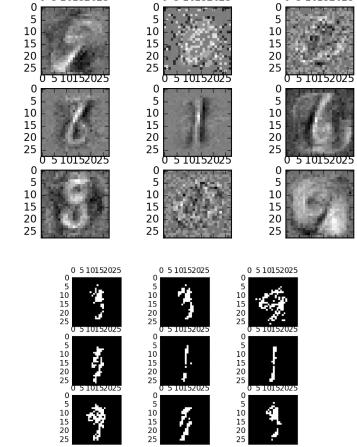
Yubo "Paul" Yang

Jan. 24 2017



Change-point model





Introduction: History

Donald Geman @ Johns Hopkins

- 1965 B.A. in English Literature from UIUC
- 1970 Ph.D in Mathematics from Northwestern

Stuart Geman @ Brown

- 1971 B.S. in Physics from UMich
- 1973 MS in Neurophysiology from Dartmouth
- 1977 Ph.D in Applied Mathematics from MIT

- 1984 Gibbs Sampling (IEEE Trans. Pattern Anal. Mach. Intell, 6, 721-741, 1984.)
- 1986 Markov Random Field Image Models (PICM. Ed. A.M. Gleason, AMS, Providence)
- 1997 Decision Trees and Random Forest (Neural Computation., 9, 1545-1588, 1997) with Y. Amit

Gibbs Sampling: One variable at a time

Basic version:

- One variable at a time
- Special case of Metropolis-Hasting (MH) i.e. Acceptance = 1

Block version:

• Sample all independent variables simultaneously

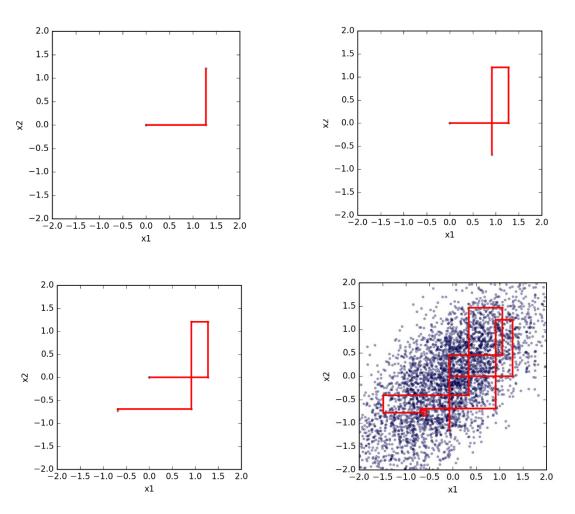
Collapsed version:

• Trace over some variables (i.e. ignore them)

Samplers within Gibbs:

• Eg. Sample some variables with MH

Basic Gibbs sampling from bivariate Normal



Example inspired by: MCMC: The Gibbs Sampler , *The Clever Machine*, https://theclevermachine.wordpress.com/2012/1 1/05/mcmc-the-gibbs-sampler/

Q0/ How to sample *x* from standard normal distribution $N(\mu = 0, \sigma = 1)$?

Q0/ How to sample x from standard normal distribution $N(\mu = 0, \sigma = 1)$?

A0/ np.random.randn() samples from P(x) =
$$\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]$$
.

Bivariate normal distribution is the generalization of the normal distribution to two variables:

$$P(x_1, x_2) = \mathbb{N}(\mu_1, \mu_2, \Sigma) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} exp\left[-\frac{z}{2(1-\rho^2)}\right]$$

Example inspired by: MCMC: The Gibbs Sampler , *The Clever Machine*, https://theclevermachine.wordpress.com/2012/1 1/05/mcmc-the-gibbs-sampler/

Q0/ How to sample x from standard normal distribution $N(\mu = 0, \sigma = 1)$?

A0/ np.random.randn() samples from P(x) = $\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]$.

Bivariate normal distribution is the generalization of the normal distribution to two variables:

$$P(x_1, x_2) = N(\mu_1, \mu_2, \Sigma) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} exp\left[-\frac{z}{2(1-\rho^2)}\right]$$

where $\Sigma = \begin{pmatrix} \sigma_1 & \rho \\ \rho & \sigma_2 \end{pmatrix}$ and $z = \frac{(x_1 - \mu_1)^2}{\sigma_1^2} - \frac{2\rho(x_1 - \mu_1)(x_2 - \mu_2)}{\sigma_1\sigma_2} + \frac{(x_2 - \mu_2)^2}{\sigma_2^2}$

For simplicity, let $\mu_1 = \mu_2 = 0$, and $\sigma_1 = \sigma_2 = 1$ then:

$$\ln P(x_1, x_2) = -\frac{x_1^2 - 2\rho x_1 x_2 + x_2^2}{2(1 - \rho^2)} + const.$$

Q/ How to sample x_1, x_2 from $P(x_1, x_2)$?

Example inspired by: MCMC: The Gibbs Sampler , *The Clever Machine*, https://theclevermachine.wordpress.com/2012/1 1/05/mcmc-the-gibbs-sampler/

The joint probability distribution of x_1 , x_2 has log:

$$\ln P(x_1, x_2) = -\frac{x_1^2 - 2\rho x_1 x_2 + x_2^2}{2(1 - \rho^2)} + const.$$

Q/ How to sample x_1, x_2 from $P(x_1, x_2)$? A/ Gibbs sampling. Fix x2, sample x1 from $P(x_1|x_2)$ Fix x1, sample x2 from $P(x_2|x_1)$ Rinse and repeat

The joint probability distribution of x_1 , x_2 has log:

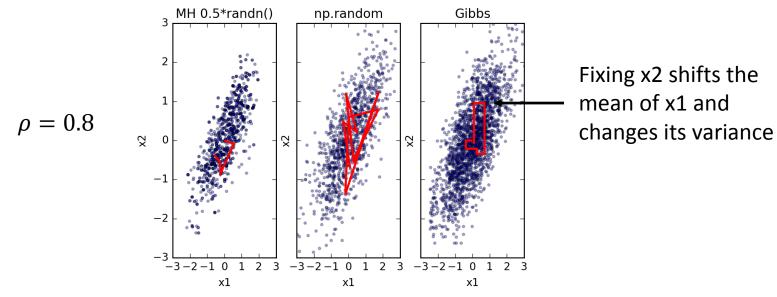
$$\ln P(x_1, x_2) = -\frac{x_1^2 - 2\rho x_1 x_2 + x_2^2}{2(1 - \rho^2)} + const.$$

Q/ How to sample x_1, x_2 from $P(x_1, x_2)$? A/ Gibbs sampling. Fix x2, sample x1 from $P(x_1|x_2)$ Fix x1, sample x2 from $P(x_2|x_1)$ Rinse and repeat

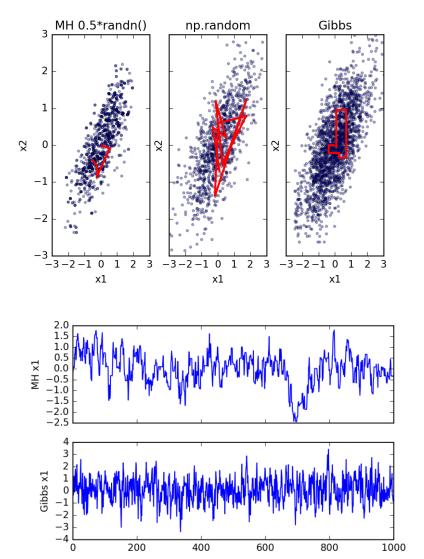
The full conditional probability distribution of x_1 has log:

$$\ln P(x_1|x_2) = -\frac{x_1^2 - 2\rho x_1 x_2}{2(1 - \rho^2)} + const. = -\frac{(x_1 - \rho x_2)^2}{2(1 - \rho^2)} + const. \Rightarrow$$
$$P(x_1|x_2) = N(\mu = \rho x_2, \sigma = \sqrt{1 - \rho^2})$$

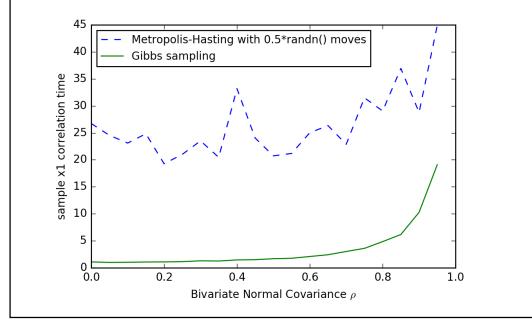
new_x1 = np.sqrt(1-rho*rho) * np.random.randn() + rho*x2



Gibbs sampler has worse correlation than numpy's built-in multivariate_normal sampler, but is much better than naïve Metropolis (reversible moves, $A = \min(1, \frac{P(x')}{P(x)})$)

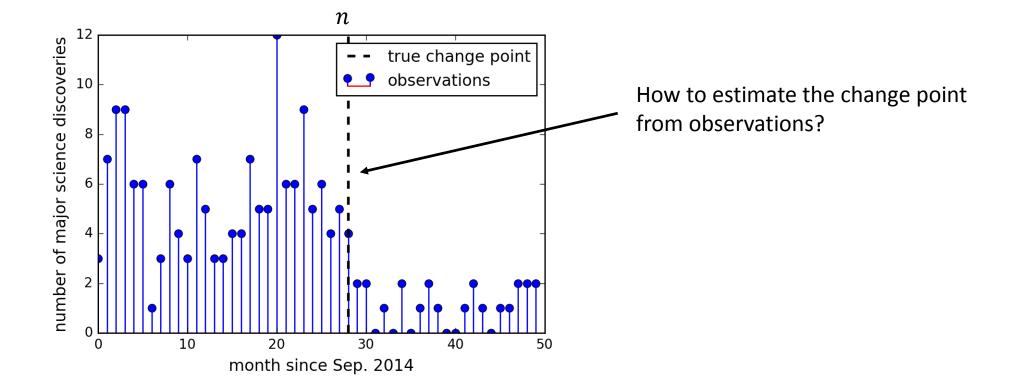


Both Gibbs and Metropolis still fail when correlation is too high.



Bayesian Inference: Improve 'guess' model with data.

The question that change-point model answers: when did a change occur to the distribution of a random variable? Example inspired by: Ilker Yildirim's notes on Gibbs sampling, http://www.mit.edu/~ilkery/papers/Gibbs Sampling.pdf



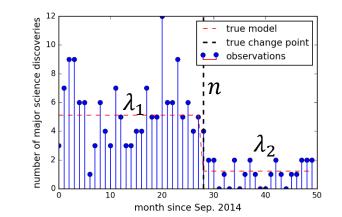
Example inspired by: Ilker Yildirim's notes on Gibbs sampling, http://www.mit.edu/~ilkery/papers/Gibbs Sampling.pdf

• change-point model: a particular probability distribution of observables and model parameters (Gamma prior, Poisson posterior)

$$P(x_{0}, x_{1}, ..., x_{N-1}, \lambda_{1}, \lambda_{2}, n) = \prod_{i=0}^{n-1} Poisson(x_{i}, \lambda_{1}) \prod_{i=n}^{N-1} Poisson(x_{i}, \lambda_{2}) \quad \text{where} \quad Poisson(x; \lambda) = e^{-\lambda} \frac{\lambda^{x}}{x!}$$

$$Gamma(\lambda_{1}; a = 2, b = 1) Gamma(\lambda_{2}; a = 2, b = 1) Uniform(n, N) \quad Gamma(\lambda; a, b) = \frac{1}{\Gamma(a)} b^{a} \lambda^{a-1} \exp(-b\lambda)$$

$$Q/ \text{ What is the full conditional probability of } \lambda_{1}? \quad Uniform(n; N) = 1/N$$



Example inspired by: Ilker Yildirim's notes on Gibbs sampling, http://www.mit.edu/~ilkery/papers/Gibbs Sampling.pdf

• change-point model: a particular probability distribution of observables and model parameters (Gamma prior, Poisson posterior)

$$P(x_{0}, x_{1}, ..., x_{N-1}, \lambda_{1}, \lambda_{2}, n) = \prod_{i=0}^{n-1} Poisson(x_{i}, \lambda_{1}) \prod_{i=n}^{N-1} Poisson(x_{i}, \lambda_{2}) \quad \text{where} \quad Poisson(x; \lambda) = e^{-\lambda} \frac{\lambda^{x}}{x_{i}!}$$

$$Gamma(\lambda_{1}; a = 2, b = 1) Gamma(\lambda_{2}; a = 2, b = 1) Uniform(n, N) \quad Gamma(\lambda; a, b) = e^{-b\lambda} \frac{\lambda^{a-1}}{\Gamma(a)} \times b^{a}$$

$$Uniform(n; N) = 1/N$$

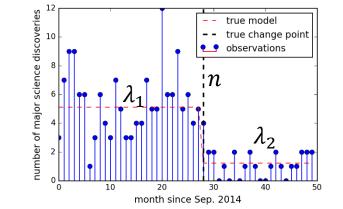
• Without observation, model parameters come from the *prior distribution* (the guess):

$$P(\lambda_1, \lambda_2, n) = Gamma(\lambda_1; a = 2, b = 1)Gamma(\lambda_2; a = 2, b = 1)Uniform(n, N)$$

• After observations, model parameters should be sampled from the *posterior distribution*:

$$P(\lambda_1, \lambda_2, n | x_0, x_1, \dots, x_{N-1})$$

Q/ How to sample from the joint posterior distribution of λ_1 , λ_2 , n?



Example inspired by: Ilker Yildirim's notes on Gibbs sampling, http://www.mit.edu/~ilkery/papers/Gibbs Sampling.pdf

Gibbs sampling require full conditionals

$$\ln P(\lambda_1 | \lambda_2, n, \mathbf{x}) = \ln Gamma(\lambda_1; a + \sum_{i=0}^{n-1} x_i, b + n)$$
$$\ln P(\lambda_2 | \lambda_1, n, \mathbf{x}) = \ln Gamma(\lambda_2; a + \sum_{i=n}^{n-1} x_i, b + n - n)$$

$$\ln P(n|\lambda_1,\lambda_2,\boldsymbol{x}) = mess(n|\lambda_1,\lambda_2,\boldsymbol{x})$$

Q/How to sample this mess?!

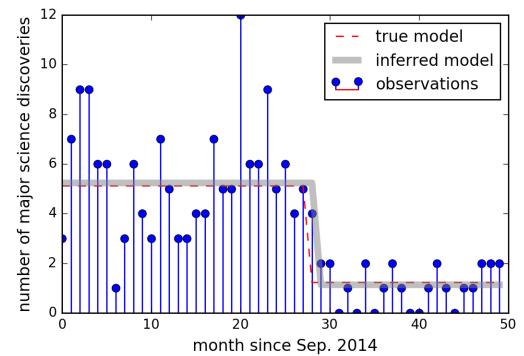
Example inspired by: Ilker Yildirim's notes on Gibbs sampling, http://www.mit.edu/~ilkery/papers/Gibbs Sampling.pdf

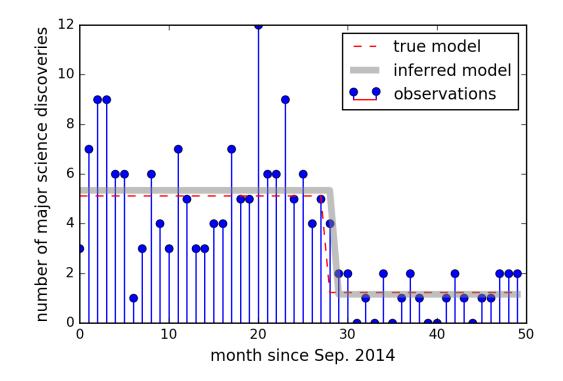
Gibbs sampling require full conditionals

$$\ln P(\lambda_1 | \lambda_2, n, \mathbf{x}) = \ln Gamma(\lambda_1; a + \sum_{i=0}^{n-1} x_i, b + n)$$
$$\ln P(\lambda_2 | \lambda_1, n, \mathbf{x}) = \ln Gamma(\lambda_2; a + \sum_{i=n}^{n-1} x_i, b + N - n)$$

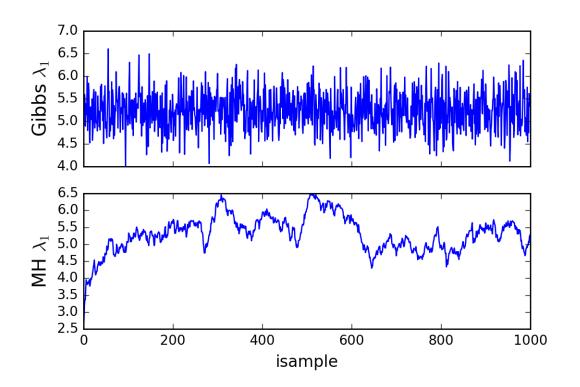
$$\ln P(n|\lambda_1,\lambda_2,\mathbf{x}) = mess(n|\lambda_1,\lambda_2,\mathbf{x})$$

Q/How to sample this mess?! A/ In general: Metropolis within Gibbs. In this case: bruteforce $P(n|\lambda_1, \lambda_2, x), \forall n = \{0, ..., N - 1\}$ because N is rather small.





Model sampled from Metropolis sampler



λ_1 samples from Gibbs and naïve Metropolis

Binary Restricted Boltzmann Machine (BRBM):

- A particular probability distribution of observables and model parameters
- The "machine" is specified by 2 real (shift) vectors and 1 real (weight) matrix
- The state of the "machine" is specified by 2 Binary vectors (hidden & visible)

See Dima's presentation for more detailed description of RBM: http://algorithminterest-group.me/algorithm/Boltzmann-Machines-Dima-Kochkov/

$$P(v, h, W, a, b) = \frac{\exp[a^{T}v + b^{T}h + h^{T}Wv]}{Z}$$

$$Z = \sum_{v,h} \exp[\sum_{j=0}^{nvis-1} a_{j}v_{j} + \sum_{i=0}^{nhid-1} b_{i}h_{i} + \sum_{i,j} h_{i}W_{ij}v_{j}]$$

$$Visualize$$

$$Visualize$$

$$W$$

$$V_{0}$$

$$V_{1}$$

$$V_{2}$$

$$V_{3}$$

$$Nvis = 4$$

Binary Restricted Boltzmann Machine (BRBM):

- A particular probability distribution of observables and model parameters
- The "machine" is specified by 2 real (shift) vectors and 1 real (weight) matrix
- The state of the "machine" is specified by 2 Binary vectors (hidden & visible)

See Dima's presentation for more detailed description of RBM: http://algorithminterest-group.me/algorithm/Boltzmann-Machines-Dima-Kochkov/

-4

-6

-2

0

2

4

$$P(v, h, W, a, b) = \frac{\exp[a^{T}v + b^{T}h + h^{T}Wv]}{Z}$$

$$Z = \sum_{v,h} \exp[\sum_{j=0}^{nvis-1} a_{j}v_{j} + \sum_{i=0}^{nhid-1} b_{i}h_{i} + \sum_{i,j} h_{i}W_{ij}v_{j}]$$

$$Visualize$$

$$Visualize$$

$$\frac{P(v_{j} = 1|*)}{P(v_{j} = 0|*)} = \frac{\exp[a^{T}v + b^{T}h + h^{T}Wv]_{v_{j}=1}}{\exp[a^{T}v + b^{T}h + h^{T}Wv]_{v_{j}=0}} = \exp\left[a_{j} + \sum_{i} h_{i}W_{ij}\right]$$

$$P(v_{j} = 1|*) = \frac{P(h_{i} = 1|*)}{P(h_{i} = 1|*) + P(h_{i} = 0|*)} = \frac{1}{1 + \exp[-a_{j} - \sum_{i} h_{i}W_{ij}]} = sigmoid(a_{j} + \sum_{i} h_{i}W_{ij})$$
Notice no matrix element among v_{j} (restricted), thus:
$$P(v = 1|*) = sigmoid(a + W^{T}h)$$

That is: we can sample binary RBM efficiently with block Gibbs sampling!

Q/ How to "train" a BRBM?

Q1/ What is the outcome/goal of "training"?

Q2/ What are the inputs in a "training"?

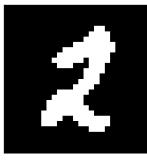
Q3/ What does it mean to "train"?

Q4/ What changes in the "training"?

MNIST database: 70,000 handwritten digits from 0 to 9

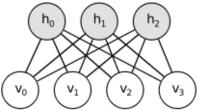
MNIST original

black & white



Each picture has 28×28 gray scale pixels $\{0,1,\ldots,255\}$. For input into the BRBM, scale to [0,1.0) and cutoff at 0.5. h_0 h_1 h_2

 $nvis = 28 \times 28 = 784$



Q/ How to "train" a BRBM?

Q1/ What is the outcome/goal of "training"? A1/ A joint probability distribution of 784 Bernoulli random variables, which favors configurations that look like digits. i.e. want P(v|*) that represents data.

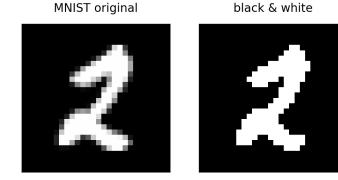
Q2/ What are the inputs in a "training"? A2/ \boldsymbol{v}_s , s=1,2,...,ndata. Each \boldsymbol{v}_s is a vector 784 0s and 1s.

Q3/ What does it mean to "train"? A3/ Increase the probability of $P(v_s | *)$.

Q4/ What changes in the "training"? A4/ The "machine". Specifically: {**a**, **b**, W}

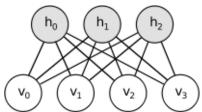
A/Increase $P(v_s | *), \forall s$ by changing $\{a, b, W\}$.

MNIST database: 70,000 handwritten digits from 0 to 9



Each picture has 28×28 gray scale pixels $\{0,1,\ldots,255\}$. For input into the BRBM, scale to [0,1.0) and cutoff at 0.5. h_0 h_1 h_2

 $nvis = 28 \times 28 = 784$



• Gradient of cost function (ref: http://deeplearning.net/tutorial/rbm.html)

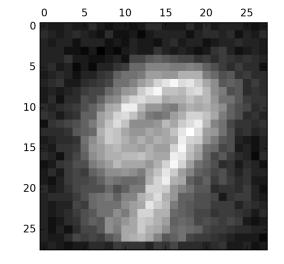
$$\frac{\partial \ln P}{\partial W_{ij}} = \langle h_i v_j \rangle_{data} - \langle h_i v_j \rangle_{model} \qquad P(v = 1|*) = sigmoid(a + W^T h) \\ P(h = 1|*) = sigmoid(b + W v) \qquad P(h = 1|*) = sigmoid(b + W v) \qquad P(h = 1|*) = sigmoid(h, h, h)$$

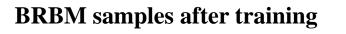
• Training procedure: Contrastive Divergence (a.k.a. shitty steepest decent)

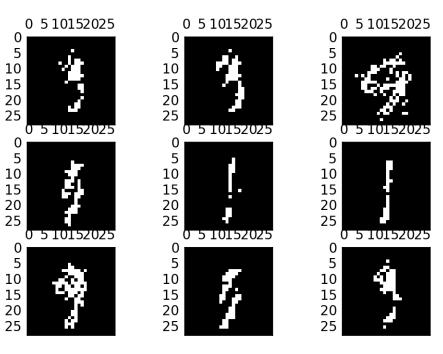
G.E. Hinton, A Practical Guide to Training Restricted Boltzmann Machines, *Neural Networks: Tricks of the Trade*, vol. 7700, pp 599-619, 2010.

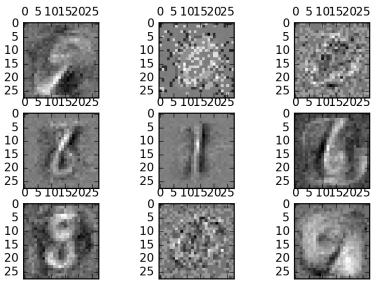
Shift vector for visible units a

Rows of weight matrix *W* (ordered by shift vector for hidden units *b*)

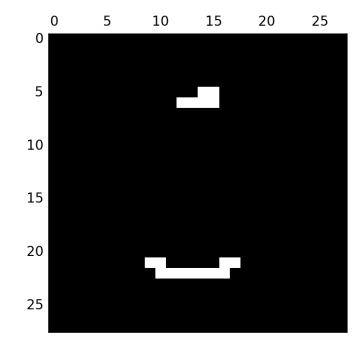








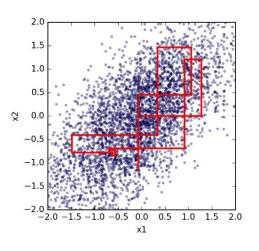
Q/ What number is this?



Conclusions:

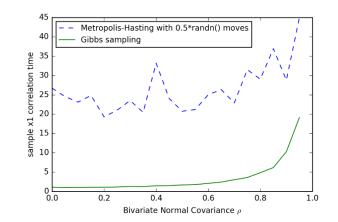
Pros:

- The *Gibbs sampling* technique draws samples from a multivariate probability distribution by sampling the full conditional of each variable in turn.
- Independent variables can be sampled simultaneously, making block Gibbs sampling highly efficient for certain distributions.
 Cons:
- Calculating full conditionals may be intractable and error prone
- Fails when random variables are nearly perfectly correlated



```
P(\boldsymbol{v} = 1 | *) = sigmoid(\boldsymbol{a} + W^T \boldsymbol{h})P(\boldsymbol{h} = 1 | *) = sigmoid(\boldsymbol{b} + W \boldsymbol{v})
```

```
1 def get_vis(h,W,a):
2     return map(int, np.random.rand(len(a)) < sigmoid(np.dot(W.T,h)+a) )
3 # end def
4 def get_hid(v,W,b):
5     return map(int, np.random.rand(len(b)) < sigmoid(np.dot(W,v)+b) )
6 # end def
```



References

Bivariate Normal Distribution:

- <u>MCMC: The Gibbs Sampler</u>, The Clever Machine
- <u>Bayesian Inference: Metropolis-Hasting Sampling</u>, Ilker Yildirim

Change-point Model:

• Bayesian Inference: Gibbs Sampling, Ilker Yildirim

Restricted Boltzmann Machine:

- <u>A Practical Guide to Training Restricted Boltzmann Machines</u>, Geoffrey E. Hinton
- <u>deeplearning.net</u>
- Introduction to Restricted Boltzmann Machines, Edwin Chen