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Gibbs Sampling: One variable at a time

• One variable at a time

• Special case of Metropolis-Hasting (MH)

i.e. Acceptance = 1

Basic version:

Block version:

Collapsed version:

Samplers within Gibbs:

• Sample all independent variables simultaneously

• Trace over some variables (i.e. ignore them)

• Eg. Sample some variables with MH

Basic Gibbs sampling from bivariate Normal



Basic Example: Sample from Bivariate Normal Distribution Example inspired by: MCMC: The Gibbs Sampler
, The Clever Machine, 
https://theclevermachine.wordpress.com/2012/1
1/05/mcmc-the-gibbs-sampler/

Q0/ How to sample 𝑥 from standard normal distribution Ɲ(𝜇 = 0, 𝜎 = 1)?



Basic Example: Sample from Bivariate Normal Distribution Example inspired by: MCMC: The Gibbs Sampler
, The Clever Machine, 
https://theclevermachine.wordpress.com/2012/1
1/05/mcmc-the-gibbs-sampler/

𝑃 𝑥1, 𝑥2 = Ɲ(𝜇1, 𝜇2, Σ) =
1

2𝜋𝜎1𝜎2 1 − 𝜌
2
𝑒𝑥𝑝 −

𝑧

2(1 − 𝜌2)

Q0/ How to sample 𝑥 from standard normal distribution Ɲ(𝜇 = 0, 𝜎 = 1)?

A0/ np.random.randn() samples from P(x) = 
1

2𝜋𝜎2
exp[−

𝑥−𝜇 2

2𝜎2
].

Bivariate normal distribution is the generalization of the normal distribution to two variables:



Basic Example: Sample from Bivariate Normal Distribution 

For simplicity, let 𝜇1 = 𝜇2 = 0, and 𝜎1 = 𝜎2 = 1 then:

Example inspired by: MCMC: The Gibbs Sampler
, The Clever Machine, 
https://theclevermachine.wordpress.com/2012/1
1/05/mcmc-the-gibbs-sampler/

𝑃 𝑥1, 𝑥2 = Ɲ(𝜇1, 𝜇2, Σ) =
1

2𝜋𝜎1𝜎2 1 − 𝜌
2
𝑒𝑥𝑝 −

𝑧

2(1 − 𝜌2)

Σ =
𝜎1 𝜌
𝜌 𝜎2

where 𝑧 =
𝑥1 − 𝜇1

2

𝜎1
2 −

2𝜌 𝑥1 − 𝜇1 𝑥2 − 𝜇2
𝜎1𝜎2

+
𝑥2 − 𝜇2

2

𝜎2
2

and

l𝑛 𝑃 𝑥1, 𝑥2 = −
𝑥1
2 − 2𝜌𝑥1𝑥2 + 𝑥2

2

2 1 − 𝜌2
+ 𝑐𝑜𝑛𝑠𝑡. Q/ How to sample 𝒙𝟏, 𝒙𝟐 from 𝑷(𝒙𝟏, 𝒙𝟐)?

Q0/ How to sample 𝑥 from standard normal distribution Ɲ(𝜇 = 0, 𝜎 = 1)?

A0/ np.random.randn() samples from P(x) = 
1

2𝜋𝜎2
exp[−

𝑥−𝜇 2

2𝜎2
].

Bivariate normal distribution is the generalization of the normal distribution to two variables:



Basic Example: Sample from Bivariate Normal Distribution 

l𝑛 𝑃 𝑥1, 𝑥2 = −
𝑥1
2 − 2𝜌𝑥1𝑥2 + 𝑥2

2

2 1 − 𝜌2
+ 𝑐𝑜𝑛𝑠𝑡.

Q/ How to sample 𝒙𝟏, 𝒙𝟐 from 𝑷(𝒙𝟏, 𝒙𝟐)?
A/ Gibbs sampling.
Fix x2, sample x1 from 𝑷(𝒙𝟏|𝒙𝟐)
Fix x1, sample x2 from 𝑷(𝒙𝟐|𝒙𝟏)
Rinse and repeat

The joint probability distribution of 𝑥1, 𝑥2 has log:



Basic Example: Sample from Bivariate Normal Distribution 

l𝑛 𝑃 𝑥1, 𝑥2 = −
𝑥1
2 − 2𝜌𝑥1𝑥2 + 𝑥2

2

2 1 − 𝜌2
+ 𝑐𝑜𝑛𝑠𝑡.

Q/ How to sample 𝒙𝟏, 𝒙𝟐 from 𝑷(𝒙𝟏, 𝒙𝟐)?
A/ Gibbs sampling.
Fix x2, sample x1 from 𝑷(𝒙𝟏|𝒙𝟐)
Fix x1, sample x2 from 𝑷(𝒙𝟐|𝒙𝟏)
Rinse and repeat

ln 𝑃 𝑥1 𝑥2 = −
𝑥1
2 − 2𝜌𝑥1𝑥2
2 1 − 𝜌2

+ 𝑐𝑜𝑛𝑠𝑡. = −
(𝑥1−𝜌𝑥2)

2

2 1 − 𝜌2
+ 𝑐𝑜𝑛𝑠𝑡. ⇒

𝑃 𝑥1 𝑥2 = Ɲ(𝜇 = 𝜌𝑥2, 𝜎 = 1 − 𝜌
2)

The joint probability distribution of 𝑥1, 𝑥2 has log:

The full conditional probability distribution of 𝑥1 has log:

new_x1 = np.sqrt(1-rho*rho) * np.random.randn() + rho*x2



Basic Example: Sample from Bivariate Normal Distribution 

Fixing x2 shifts the 
mean of x1 and 
changes its variance𝜌 = 0.8



Basic Example: Sample from Bivariate Normal Distribution 

Gibbs sampler has worse correlation than numpy’s built-in multivariate_normal sampler, 

but is much better than naïve Metropolis ( reversible moves, 𝐴 = min(1,
𝑃(𝒙′)

𝑃(𝒙)
) )

Both Gibbs and Metropolis still fail when 
correlation is too high.



Model Example: Train a Change-point Model with Bayesian Inference

Bayesian Inference: Improve ‘guess’ model with data.

Example inspired by: Ilker Yildirim’s notes 
on Gibbs sampling, 
http://www.mit.edu/~ilkery/papers/Gibbs
Sampling.pdf

The question that change-point model answers:
when did a change occur to the distribution of a random variable?

How to estimate the change point 
from observations? 

𝑛



Model Example: Train a Change-point Model with Bayesian Inference
Example inspired by: Ilker Yildirim’s notes 
on Gibbs sampling, 
http://www.mit.edu/~ilkery/papers/Gibbs
Sampling.pdf

• change-point model: a particular probability distribution of observables and model parameters
(Gamma prior, Poisson posterior)

𝑃 𝑥0, 𝑥1, … , 𝑥𝑁−1, 𝜆1, 𝜆2, 𝑛 = 

𝑖=0

𝑛−1

𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝑥𝑖 , 𝜆1  

𝑖=𝑛

𝑁−1

𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝑥𝑖 , 𝜆2

𝐺𝑎𝑚𝑚𝑎 𝜆1; 𝑎 = 2, 𝑏 = 1 𝐺𝑎𝑚𝑚𝑎 𝜆2; 𝑎 = 2, 𝑏 = 1 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(𝑛, 𝑁)

𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝑥; 𝜆 = 𝑒−𝜆
𝜆𝑥

𝑥!

𝐺𝑎𝑚𝑚𝑎 𝜆; 𝑎, 𝑏 =
1

Γ(𝑎)
𝑏𝑎𝜆𝑎−1 exp −𝑏𝜆

𝑈𝑛𝑖𝑓𝑜𝑟𝑚 𝑛;𝑁 = 1/𝑁Q/ What is the full conditional probability of 𝝀𝟏?

where

𝜆2

𝜆1
𝑛



Model Example: Train a Change-point Model with Bayesian Inference
Example inspired by: Ilker Yildirim’s notes 
on Gibbs sampling, 
http://www.mit.edu/~ilkery/papers/Gibbs
Sampling.pdf

• change-point model: a particular probability distribution of observables and model parameters
(Gamma prior, Poisson posterior)

𝑃 𝑥0, 𝑥1, … , 𝑥𝑁−1, 𝜆1, 𝜆2, 𝑛 = 

𝑖=0

𝑛−1

𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝑥𝑖 , 𝜆1  

𝑖=𝑛

𝑁−1

𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝑥𝑖 , 𝜆2

𝐺𝑎𝑚𝑚𝑎 𝜆1; 𝑎 = 2, 𝑏 = 1 𝐺𝑎𝑚𝑚𝑎 𝜆2; 𝑎 = 2, 𝑏 = 1 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(𝑛, 𝑁)

𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝑥; 𝜆 = 𝑒−𝜆
𝜆𝑥

𝑥!

𝐺𝑎𝑚𝑚𝑎 𝜆; 𝑎, 𝑏 = 𝑒−𝑏𝜆
𝜆𝑎−1

Γ(𝑎)
× 𝑏𝑎

𝑈𝑛𝑖𝑓𝑜𝑟𝑚 𝑛;𝑁 = 1/𝑁

where

• Without observation, model parameters come from the prior distribution (the guess):

𝑃 𝜆1, 𝜆2, 𝑛 = 𝐺𝑎𝑚𝑚𝑎 𝜆1; 𝑎 = 2, 𝑏 = 1 𝐺𝑎𝑚𝑚𝑎 𝜆2; 𝑎 = 2, 𝑏 = 1 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(𝑛, 𝑁)

• After observations, model parameters should be sampled from the posterior distribution:

𝑃 𝜆1, 𝜆2, 𝑛|𝑥0, 𝑥1, … , 𝑥𝑁−1

Q/ How to sample from the joint posterior distribution of 𝜆1, 𝜆2, 𝑛?

𝜆2

𝜆1
𝑛



Model Example: Train a Change-point Model with Bayesian Inference
Example inspired by: Ilker Yildirim’s notes 
on Gibbs sampling, 
http://www.mit.edu/~ilkery/papers/Gibbs
Sampling.pdf

ln 𝑃 𝜆1 𝜆2, 𝑛, 𝒙 = ln𝐺𝑎𝑚𝑚𝑎(𝜆1; 𝑎 + 

𝑖=0

𝑛−1

𝑥𝑖 , 𝑏 + 𝑛)

ln 𝑃 𝜆2 𝜆1, 𝑛, 𝒙 = ln𝐺𝑎𝑚𝑚𝑎(𝜆2; 𝑎 +  

𝑖=𝑛

𝑁−1

𝑥𝑖 , 𝑏 + 𝑁 − 𝑛)

ln 𝑃 𝑛 𝜆1, 𝜆2, 𝒙 = 𝑚𝑒𝑠𝑠 𝑛 𝜆1, 𝜆2, 𝒙

Q/How to sample this mess?!

Gibbs sampling require full conditionals



Model Example: Train a Change-point Model with Bayesian Inference
Example inspired by: Ilker Yildirim’s notes 
on Gibbs sampling, 
http://www.mit.edu/~ilkery/papers/Gibbs
Sampling.pdf

ln 𝑃 𝜆1 𝜆2, 𝑛, 𝒙 = ln𝐺𝑎𝑚𝑚𝑎(𝜆1; 𝑎 + 

𝑖=0

𝑛−1

𝑥𝑖 , 𝑏 + 𝑛)

ln𝑃 𝜆2 𝜆1, 𝑛, 𝒙 = ln𝐺𝑎𝑚𝑚𝑎(𝜆2; 𝑎 +  

𝑖=𝑛

𝑁−1

𝑥𝑖 , 𝑏 + 𝑁 − 𝑛)

ln 𝑃 𝑛 𝜆1, 𝜆2, 𝒙 = 𝑚𝑒𝑠𝑠 𝑛 𝜆1, 𝜆2, 𝒙

Q/How to sample this mess?!
A/ In general: Metropolis within Gibbs.
In this case: bruteforce 𝑃 𝑛 𝜆1, 𝜆2, 𝒙 , ∀𝑛 = 0,… ,𝑁 − 1
because N is rather small.

Gibbs sampling require full conditionals



Model Example: Train a Change-point Model with Bayesian Inference

𝜆1 samples from Gibbs and naïve MetropolisModel sampled from Metropolis sampler 



Advanced Example: Train a Binary Restricted Boltzmann Machine on MNIST

Binary Restricted Boltzmann Machine (BRBM): 
• A particular probability distribution of observables and model parameters
• The “machine” is specified by 2 real (shift) vectors and 1 real (weight) matrix
• The state of the “machine” is specified by 2 Binary vectors (hidden & visible)

𝑃 𝒗, 𝒉,𝑊, 𝒂, 𝒃 =
exp 𝒂𝑇𝒗 + 𝒃𝑇𝒉 + 𝒉𝑇𝑊𝒗

𝑍
𝑍 = 

𝒗,𝒉

exp[  

𝑗=0

𝑛𝑣𝑖𝑠−1

𝑎𝑗𝑣𝑗 +  

𝑖=0

𝑛ℎ𝑖𝑑−1

𝑏𝑖ℎ𝑖 + 

𝑖,𝑗

ℎ𝑖𝑊𝑖𝑗𝑣𝑗]

• In binary RBM, 𝒗, 𝒉 are vectors of 1s and 0s.

See Dima’s presentation for more detailed 
description of RBM: http://algorithm-
interest-group.me/algorithm/Boltzmann-
Machines-Dima-Kochkov/

visualize

𝑊

𝑛ℎ𝑖𝑑 = 3

𝑛𝑣𝑖𝑠 = 4



Advanced Example: Train a Binary Restricted Boltzmann Machine on MNIST

Binary Restricted Boltzmann Machine (BRBM): 
• A particular probability distribution of observables and model parameters
• The “machine” is specified by 2 real (shift) vectors and 1 real (weight) matrix
• The state of the “machine” is specified by 2 Binary vectors (hidden & visible)

𝑃 𝒗, 𝒉,𝑊, 𝒂, 𝒃 =
exp 𝒂𝑇𝒗 + 𝒃𝑇𝒉 + 𝒉𝑇𝑊𝒗

𝑍
𝑍 = 

𝒗,𝒉

exp[  

𝑗=0

𝑛𝑣𝑖𝑠−1

𝑎𝑗𝑣𝑗 +  

𝑖=0

𝑛ℎ𝑖𝑑−1

𝑏𝑖ℎ𝑖 + 

𝑖,𝑗

ℎ𝑖𝑊𝑖𝑗𝑣𝑗]

• In binary RBM, 𝒗, 𝒉 are vectors of 1s and 0s.
Thus full conditionals are simple:

See Dima’s presentation for more detailed 
description of RBM: http://algorithm-
interest-group.me/algorithm/Boltzmann-
Machines-Dima-Kochkov/

visualize

𝑊
𝑃 𝑣𝑗 = 1 ∗

𝑃 𝑣𝑗 = 0 ∗
=
exp 𝒂𝑇𝒗 + 𝒃𝑇𝒉 + 𝒉𝑇𝑊𝒗 vj=1

exp 𝒂𝑇𝒗 + 𝒃𝑇𝒉 + 𝒉𝑇𝑊𝒗 vj=0
= exp 𝑎𝑗 + 

𝑖

ℎ𝑖𝑊𝑖𝑗

𝑛ℎ𝑖𝑑 = 3

𝑛𝑣𝑖𝑠 = 4

𝑃 𝑣𝑗 = 1 ∗ =
𝑃 ℎ𝑖 = 1 ∗

𝑃 ℎ𝑖 = 1 ∗ +𝑃 ℎ𝑖 = 0 ∗
=

1

1+exp −𝑎𝑗− 𝑖 ℎ𝑖𝑊𝑖𝑗
= 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑎𝑗 +  𝑖 ℎ𝑖𝑊𝑖𝑗)

That is: we can sample binary RBM efficiently with block Gibbs sampling!

Notice no matrix element among 𝑣𝑗 (restricted), thus: 𝑃 𝒗 = 1 ∗ = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝒂 +𝑊𝑇𝒉)



Advanced Example: Train a Binary Restricted Boltzmann Machine on MNIST

Q/ How to “train” a BRBM?

Q1/ What is the outcome/goal of “training”?

Q2/ What are the inputs in a “training”?

Q3/ What does it mean to “train”?

Q4/ What changes in the “training”? 

MNIST database:

70,000 handwritten digits from 0 to 9

Each picture has 28×28 gray scale pixels 

{0,1,…,255}. For input into the BRBM, scale to 

[0,1.0) and cutoff at 0.5. 

nvis = 28×28 = 784



Advanced Example: Train a Binary Restricted Boltzmann Machine on MNIST

Q/ How to “train” a BRBM?

Q1/ What is the outcome/goal of “training”?

A1/ A joint probability distribution of 784 Bernoulli 

random variables, which favors configurations that look 

like digits. i.e. want 𝑃(𝒗| ∗) that represents data.

Q2/ What are the inputs in a “training”?

A2/ 𝒗𝑠, s=1,2,…,ndata. Each 𝒗𝑠 is a vector 784 0s and 1s.

Q3/ What does it mean to “train”?

A3/  Increase the probability of 𝑃(𝒗𝑠| ∗).

Q4/ What changes in the “training”?

A4/ The “machine”. Specifically: {𝐚, 𝒃,𝑊}

A/ Increase 𝑃 𝒗𝑠 ∗ , ∀𝑠 by changing  𝐚, 𝒃,𝑊 .

MNIST database:

70,000 handwritten digits from 0 to 9

Each picture has 28×28 gray scale pixels 

{0,1,…,255}. For input into the BRBM, scale to 

[0,1.0) and cutoff at 0.5. 

nvis = 28×28 = 784



Advanced Example: Train a Binary Restricted Boltzmann Machine on MNIST

𝑃 𝒗 = 1 ∗ = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝒂 +𝑊𝑇𝒉)

𝑃 𝒉 = 1 ∗ = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝒃 +𝑊 𝒗)

• Gradient of cost function (ref: http://deeplearning.net/tutorial/rbm.html)

𝜕 ln𝑃

𝜕𝑊𝑖𝑗
=< ℎ𝑖𝑣𝑗 >𝑑𝑎𝑡𝑎 − < ℎ𝑖𝑣𝑗 >𝑚𝑜𝑑𝑒𝑙

• Training procedure: Contrastive Divergence (a.k.a. shitty steepest decent)

G.E. Hinton, A Practical Guide to Training Restricted

Boltzmann Machines, Neural Networks: Tricks of the Trade, vol. 7700, pp 599-619, 2010.



Advanced Example: Train a Binary Restricted Boltzmann Machine on MNIST

Shift vector for visible units Rows of weight matrix 𝑊
(ordered by shift vector for hidden units 𝒃)

BRBM samples after training

𝒂



Advanced Example: Train a Binary Restricted Boltzmann Machine on MNIST

Q/ What number is this?



Conclusions:

Pros:

• The Gibbs sampling technique draws samples from a multivariate 

probability distribution by sampling the full conditional of each 

variable in turn.

• Independent variables can be sampled simultaneously, making 

block Gibbs sampling highly efficient for certain distributions.

Cons:

• Calculating full conditionals may be intractable and error prone

• Fails when random variables are nearly perfectly correlated

𝑃 𝒗 = 1 ∗ = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝒂 +𝑊𝑇𝒉)

𝑃 𝒉 = 1 ∗ = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝒃 +𝑊 𝒗)
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