Polynomial-Scaling Algorithm for the Linear Sum Assignment Problem Yubo "Paul" Yang, 2020-10-18, Algorithm Interest Group (<u>http://algorithm-interest-group.me</u>)

row 2 with col 3

What is the (balanced) linear sum assignment problem (LSAP)?

Goal find minimum-cost assignment of n "agents" to n "tasks".

Problem defined by a cost matrix. c_{ij} is the cost to assign agent *i* to task *j*.

Mathematically a linear programming (LP) problem:

Minimize

$$\sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij}$$

with constraints

$$\sum_{i=1}^{n} x_{ij} = 1$$
$$\sum_{j=1}^{n} x_{ij} = 1$$

$$x_{ij} \ge 0, \forall i, j$$

What is the (balanced) linear sum assignment problem (LSAP)?

Why solve LSAP? Many practical (real-world!) applications

Choose 4/n swimmers for relay team (back, breast, butterfly, free style) [1]

Vehicle routing problems (eg. Taxi, flights) [2]

Reconstruct mass distribution in the early universe [3]

Shoot down Soviet nukes [4]

Quantum exchange [5]

[1] R.E. Machol, "An application of the assignment problem," Oper. Res. 18, 745 (1970)

[2] M. Fischetti, A. Lodi, S. Martello, and P. Toth, "A polyhedral approach to simplified crew scheduling and vehicle scheduling problems," Management Sci. **47**, 833 (2001).

[3] U. Frisch and A. Sobolevskii, "Application of optimal transport theory to reconstruction of the early universe," J. Math. Sci. **133**, 1539 (2006).

[4] B.L. Schwartz, "A computational analysis of the auction algorithm," Euro. J. Oper. Res. 74, 161 (1994).

[5] D.M. Ceperley, G. Jacucci, "Calculation of Exchange Frequencies in bcc 3He with the Path-Integral Monte Carlo Method," Phys. Rev. Lett. 58, 1648 (1987).

How to solve LSAP?

Short answer: read a book [1]

I will walk through the internals of the "Hungarian algorithm"

Dénes Kőnig

Jenő Egerváry

[1] Rainer Burkard, Mauro Dell'Amico,Silvano Martello, "Assignment Problems: Revised Reprint," SIAM (2009).

[2] T. Bonniger, G. Katzakidis, R.E. Burkard,U. Derigs, "Solution Methods with FORTRAN-Programs", Springer-Verlag Berlin (1980).
 Table 4.2. Evolution of algorithms for LSAP.

Year	Reference	Time complexity	Category
1946	Easterfield [255]	exponential	Combinatorial
1955	Kuhn [457]	$O(n^4)$	Primal-dual
1957	Munkres [524]	$O(n^4)$	Primal-dual
1964	Balinski and Gomory [65]	$O(n^4)$	Primal
1969	Dinic and Kronrod [243]	$O(n^3)$	Dual
1971	Tomizawa [670]	$O(n^3)$	Shortest path
1972	Edmonds and Karp [260]	$O(n^3)$	Shortest path
1976	Lawler [467]	$O(n^3)$	Primal-dual
1976	Cunningham [211]	exponential	Primal simplex
1977	Barr, Glover, and Klingman [69]	exponential	Primal simplex
1978	Cunningham and Marsh [214]	$O(n^3)$	Primal
1980	Hung and Rom [395]	$O(n^3)$	Dual
1981	Bertsekas [88]	$O(n^3 + n^2 \mathcal{C})$	Auction
1985	Balinski [63], Goldfarb [346]	$O(n^3)$	Dual simplex
1985	Gabow [307]	$O(n^{3/4}m\log \mathcal{C})$	Cost scaling
1988	Bertsekas and Eckstein [94]	$O(nm\log(n\mathcal{C}))$	Auction + ε -rel.
1989	Gabow and Tarjan [309]	$O(\sqrt{n} \ m \log(n\mathcal{C}))$	Cost scaling
1993	Orlin and Ahuja [538]	$O(\sqrt{n} \ m \log(n\mathcal{C}))$	Auction + ε -rel.
1993	Akgül [20]	$O(n^3)$	Primal simplex
1995	Goldberg and Kennedy [340]	$O(\sqrt{n} \ m \log(n\mathcal{C}))$	Pseudoflow
2001	Kao, Lam, Sung, and Ting [419]	$O(\sqrt{n} \mathcal{W} \log(\frac{n^2}{\mathcal{W}/\mathcal{C}}) / \log n)$	Decomposition

Primal-dual formulation of the LSAP

The Hungarian algorithm : simultaneous primal and dual solutions

Big idea: By duality theorem, an optimal solution to both primal and dual problems is THE optimal solution.

Algorithm:

- 1. Initialize ultra optimal dual variables. Only a partial primal assignment is *admissible*.
- 2. Search *admissible solutions* for the primal assignment with largest cardinality.
- 3. If all tasks assigned, then done.
- 4. Otherwise relax constraints, i.e. decrease dual cost function by minimum reduced cost.

row 5 with col 4

row 5 with col 4

Timings

Three implementations:

- Yang (Python)
- Ceperley (FORTRAN)
- Scipy

Which one is which?

- Method 1 = Ceperley (FORTRAN)
- Method 2 = SciPy
- Method 3 = Yang (Python)


```
def minimum reduced cost(cbar
Implementation Breakdown (Python)
                                                     def dual variables(cmat):
                                                                                                  m, n = cbar.shape
                                                        u = np.min(cmat, axis=1)
                                                                                                  assert m == n
def kuhn_hungarian(cmat):
                                                                                                  vset = full set(n)
                                                        v = np.min(cmat-u[:, None], axis=0)
  u, v = dual variables(cmat)
                                                                                                  delta = np.inf
  cbar = admissible transform(cmat, u, v)
                                                        return u, v
                                                                                                   for i in su:
  # initialize partial solution
                                                      def admissible_transform(cmat, u, v)
                                                                                                    for j in vset-lv:
  phi = partial primal solution(cmat)
                                                        m, n = cmat.shape
                                                                                                      if cbar[i, j] < delta:</pre>
  row = transpose map(phi)
                                                        assert m == n
                                                                                                         delta = cbar[i, j]
  # main loop
                                                        cbar = np.array([
  uset = set(np.where(phi >= 0) [0])
                                                                                                  return delta
                                                           [cmat[i, j]-u[i]-v[j] for j in range(n)]
  while len(uset) < n:</pre>
    k = (full set(n) - uset).pop()
                                                        for i in range(n)])
    # find alternating path
                                                        return cbar
    sink, jpred, su, lv, sv = alternate(k, row, cbar) def alternate(k, row, cbar):
    if sink >= 0: # enlarge primal solution
                                                        su = lv = sv = set()
      uset.add(k)
                                                        jpred = -np.ones(n, dtype=int)
      j = sink
                                                        while (not fail) and (sink < 0):
      i = -1
                                                          su.add(i)
      while i != k:
                                                         for j in vset-lv: # look for admissible column at row i
        i = jpred[j]
                                                           if (cbar[i, j] == 0): # admissible
        row[j] = i
                                                             lv.add(j)
        phi[i], j = j, phi[i]
                                                             jpred[j] = i
    else: # update the dual solution
                                                         # scan lv by selecting one column at a time
      delta = minimum reduced cost(cbar, su, lv)
                                                         if len(lv-sv) > 0: # scan next column in lv
      for i in su:
                                                           j = (lv - sv) \cdot pop()
                                                           sv.add(j)
        u[i] += delta
                                                           if row[j] < 0:
      for j in lv:
                                                             sink = j
        v[j] -= delta
                                                           else:
      cbar = admissible transform(cmat, u, v)
                                                             i = row[i]
    uset = set(np.where(phi>=0)[0])
                                                          else: # finished scan without finding sink
  return phi
                                                           fail = True
                                                          iwhile += 1
                                                        return sink, jpred, su, lv, sv
```

[1] Rainer Burkard, Mauro Dell'Amico, Silvano Martello, "Assignment Problems: Revised Reprint," SIAM (2009).

Implementation Breakdown (FORTRAN)

	do 110 1=1, n if(lp(i)) go to 110	c make	partial primal assignment	c init	tialize dual variabales (ys, yt)	
	if(dm(i)) = constant d = d		do 2 i=1.n		do i=1.n	
	d=dm(i)		$d_{0} = \frac{1}{2} + \frac{1}{2}$		if(izo(i) og 0) vt(i) = cup	
	k=i	,	uo s j=i,n		$\mathbf{I}(\mathbf{I}\mathbf{Z}\mathbf{e}(\mathbf{J}), \mathbf{eq}, \mathbf{e}) \mathbf{y}\mathbf{U}(\mathbf{J}) = \mathbf{Sup}$	
10	continue		cc=c(j,i)		enddo	
	if(ize(k).le.0) go to 400		if(i.eg.1) goto 4		do 6 i=1.n	
	la(k)=.true.		if(cc, ui, cc, onc) doto 3		ui = vc(i)	
	iw=ize(k)		Ti(cc-ur.ge.eps) goto 5			
	1WS = (1W - 1) * n	4	ui=cc		do 7 j=1,n	
	dp(1w)=d		i0=i		vi=vt(i)	
	if(la(i)) go to 130	Э	continuo		if(vi lo onc) do to 7	
	val=d+c(i,iw)-vs(iw)-vt(i)	2	continue		TI(v). (e, eps) go to /	
	if(dm(i).le.vgl+eps) go to 130		ys(i)=ui		CC=C(],1)-U1	
	dm(i)=vgl		if(ize(i0).ne.0) go to 2		if(cc+eps.ge.vi) go to 7	
	ivor(i)=iw		$i_{20}(i_0) = i$		$v_{t}(i) = cc$	
.30	continue				y () / – CC	
	go to 105		iperm(i)=j0		lvor(j)=1	
	mentation	2	continue	7	continue	
100	ize(k)=iw		CONCENSIO	6	continuo	
	ind=iperm(iw)			0	Continue	
	iperm(iw)=k		Enlarge primal assignment			
	if(iw.eq.iu) go to 500		Enarge prinar assignment			
	k=ind					
	go to 400					
: tra	nstormation					
.00	do 510 1=1, n if(dn(i) a g cup) g c t c 505					
	r(ap(1), eq. sup) go to sub r(ap(1), eq. sup)		Undata dual variables			
605	if(dm(i) + ens q = d) q = to 510		Opuale dual variables			
	vt(i)=vt(i)+dm(i)-d					
510	continue					
000	continue					

[2] T. Bonniger, G. Katzakidis, R.E. Burkard, U. Derigs, "Solution Methods with FORTRAN-Programs", Springer-Verlag Berlin (1980).

Your Application!

Assign project teams?

Dating app? : optimal assignment of stable marriages

Your idea goes here!

Conclusion: The Hungarian alg. is a primal-dual poly.-time solution to the LSAP

row 5 with col 4