
Marching Cubes
Yubo “Paul” Yang, Algorithm Group, 2017/09/12

Ref: Paul Bourke, “Polygonising a scalar field,”

http://paulbourke.net/geometry/polygonise/

Rawkstar, “Game Art, Necromancer General,”

ZBrushCentral

Showcase I: s,p,d basis function

Showcase II: carbon diamond Hatree-Fock orbitals

“The” Problem: Isosurface Extraction

Ref: Paul Bourke, “Polygonising a scalar field,” http://paulbourke.net/geometry/polygonise/

Find N-1 representation of the zero-crossings of an N dimensional

scalar field 𝑓 𝑥 = 0.

To simplify discussion:

1. restrict to 3 dimensions

2. assume scalar field is sampled on a regular grid

“The” Problem: Polygonising a Scalar Field

Ref: Paul Bourke, “Polygonising a scalar field,” http://paulbourke.net/geometry/polygonise/

Form a facet approximation for an isosurface of a scalar field sampled

on a rectangular 3D grid.

Triangle 1

Triangle 2

Triangle 3

Triangle 8

…

3x3x3 samples of 𝒆−𝒓𝟐

Solution: March through the voxels (cubes) and make polygons (cubes)

Ref: Paul Bourke, “Polygonising a scalar field,” http://paulbourke.net/geometry/polygonise/

This is what a Gaussian looks like!

“The” Implementation of Marching Cubes

by Paul Bourke Ref: “Polygonising a scalar field”, http://paulbourke.net/geometry/polygonise/

“The” Implementation: Step 1 Find Intersecting Edges

by Paul Bourke Ref: “Polygonising a scalar field”, http://paulbourke.net/geometry/polygonise/

0

0

0

0

1

0

0

0

7

6

5

4

3

2

1

0

vertex < iso.

1

0

0

0

0

0

0

0

1

1

0

0

11

10

9

8

7

6

5

4

3

2

1

0

edgeintersect

Edge table

“The” Implementation: Step 2 Find Intersection Locations

by Paul Bourke Ref: “Polygonising a scalar field”, http://paulbourke.net/geometry/polygonise/

(𝑃1, 𝑉1)

 𝑃

𝑃 = 𝑃1 +
𝑉𝑖𝑠𝑜 − 𝑉1

𝑉2 − 𝑉1
𝑃2

(𝑃2, 𝑉2)

𝑉𝑖𝑠𝑜

Linear Interpolation:

“The” Implementation: Step 3 List Triangles

by Paul Bourke Ref: “Polygonising a scalar field”, http://paulbourke.net/geometry/polygonise/

𝑃2

Triangle list = [(3,11,2)]
𝑃3 = [intersect at edge 3]

𝑃11 = [intersect at edge 11]

𝑃2 = [intersect at edge 2]

𝑃3
𝑃11

Exercise

by Paul Bourke Ref: “Polygonising a scalar field”, http://paulbourke.net/geometry/polygonise/

0

0

0

0

1

0

0

1

7

6

5

4

3

2

1

0

vertex < iso.

11

10

9

8

7

6

5

4

3

2

1

0

edgeintersect

Edge table

1

0

0

1

0

0

0

0

0

1

0

1

Possible Ambiguity?

Constructing the Edge Table

1. Realize that there are 28 = 256 cases to

consider.

2. Use symmetries to reduce to 15 unique cases

3. Go through each case and resolve ambiguity

Wikipedia

Timing

The marching cubes algorithm is almost entirely table look-up

Slowness in matplotlib is likely due to 2D projection overhead (matplotlib does not

do actual 3D rendering)

Timing of skimage.measure.marching_cubes_lewiner

on 1 core of i7-4702MQ @ 2.2GHz

Normal Mapping

Dot averaged face normal vectors with light rays to determine luminescence

Modern Replacement: Surface Nets

Mikola Lysenko, “Smooth Voxel Terrain” (2012)

S.F. Gibson, (1999) “Constrained Elastic Surface Nets” Mitsubishi Electric Research Labs, Technical Report.

Compute the edge crossings (like we did in marching cubes) and then take their

center of mass as the vertex for each cube.

Fewer vertices than marching cubes

https://0fps.net/2012/07/12/smooth-voxel-terrain-part-2/
http://www.merl.com/papers/docs/TR99-24.pdf

References:

[1] Paul Bourke, “Polygonising a scalar field” (1994)

[2] Mikola Lysenko, “Smooth Voxel Terrain” (2012)

[3] Sarah F. Gibson, “Constrained Elastic Surface Nets” (1999)

Utilities:

a click bate you will NOT regret falling for!

plot basis from PySCF

plot orbitals from PySCF (call the show_moR function)

plot spin density from PySCF

http://paulbourke.net/geometry/polygonise/
https://0fps.net/2012/07/12/smooth-voxel-terrain-part-2/
http://www.merl.com/publications/docs/TR99-24.pdf
http://mikolalysenko.github.io/Isosurface/
https://github.com/Paul-St-Young/share/tree/master/algorithms/iso3d/basis
https://github.com/Paul-St-Young/share/tree/master/algorithms/iso3d/hf
https://github.com/Paul-St-Young/share/tree/master/algorithms/iso3d/hf

