
Reservoir Computing in the Time Domain

Will Wheeler
Feb 14, 2017

Algorithms Interest Group, UIUC

Laurent Larger, Antonio Baylón-Fuentes, Romain Martinenghi, Vladimir S. Udaltsov, Yanne K. Chembo and Maxime Jacquot,
“High-Speed Photonic Reservoir Computing Using a Time-Delay-Based Architecture: Million Words per Second
Classification,” PHYSICAL REVIEW X 7, 011015 (2017). DOI:10.1103/PhysRevX.7.011015

Neural network simulation!
...Wait, this isn’t how brains work

Brains are good: let’s make computers like
brains.

We want greater computing power
Turing-von Neumann architecture: can’t we
do better?

Still not how brains work, but this has
dynamics (cycles)

Reservoir computing

Romain Modeste Nguimdo, Guy Verschaffelt, Jan Danckaert, and Guy Van der Sande, "Reducing the
phase sensitivity of laser-based optical reservoir computing systems," Opt. Express 24, 1238-1252
(2016)

Nonlinear function Nonlinear dynamical system

http://cs231n.github.io/neural-networks-1/

With each sample:
⋄ Train input weights
⋄ Train hidden weights
⋄ Train output weights

With each sample:
⋄ Fixed input weights
⋄ Fixed hidden weights
⋄ Train output weights

Time domain of a single node

Romain Modeste Nguimdo, Guy Verschaffelt, Jan Danckaert, and Guy Van der Sande, "Reducing the
phase sensitivity of laser-based optical reservoir computing systems," Opt. Express 24, 1238-1252
(2016)

Principles of RC, with an input mask WI spreading the input
information onto the RC nodes, and with a read-out WR extracting
the computed output from the node states. Left diagram: A spatially
extended dynamical network of nodes. Right diagram: A nonlinear
delayed feedback dynamics emulating virtual nodes which are
addressed via time multiplexing. Here, f(x) stands for the nonlinear
feedback transformation, and h(t) denotes the loop linear impulse
response.

Time multiplexing
feedback delay time τD

τD/NL τD/NL τD/NL
NL

 input vectors

τD/(NLK) τD/(NLK) τD/(NLK) τD/(NLK) τD/(NLK) τD/(NLK) τD/(NLK) τD/(NLK) τD/(NLK) τD/(NLK) τD/(NLK) τD/(NLK) K elements per
input vector

Time-scale of dynamics: about 5 input units

Discrete time variables
n (input vector)
σ (input element)

System implementation with laser

EO phase setup involving two integrated optic phase modulators followed by an imbalanced Mach-Zehnder DPSK demodulator providing a
temporally nonlocal, nonlinear, phase-to-intensity conversion. The information to be processed by this delay photonic reservoir is provided
by a high-speed arbitrary waveform generator (AWG). The response signal from the delay dynamics is recorded by an ultrafast real-time
digital oscilloscope at the bottom of the setup, after the circulator, followed by an amplified photodiode and a filter.

demodulator has “time imbalance δT”
form of interference function

Input data

Illustration of the input information injection into the dynamics. The (sparse and random) K×Q write-in matrix WI performs a spreading of the
input cochleagram information represented as a Q×N cochleagram matrix Mu. The resulting K×N matrix Min defines a scalar temporal
waveform uIσ(n) obtained after horizontally queuing the N columns, each of them being formed by the K amplitudes addressing the virtual
nodes in one layer.

[K × Q] [Q × N] [K × N]

Cochleagram:
1D sound waveform
→ 2D
frequency-time
matrix

Q frequency
channels (rows), N
times (cols)

Data from the TI46 speech corpus: 500 pronounced digits between 0 and 9.
The digits are pronounced by five different female speakers uttering the 10 digits 10 times, with the
acoustic waveform being digitally recorded at a sampling rate of 12.5 kHz.

Training readout

Illustration of the expected optimized read-out processing through a (M×K) matrix WR, left multiplying the transient response (K×N) matrix
Mx, thus resulting in an easy-to-interpret target (M×N) matrix My. The latter matrix is aimed at designating the right answer for the digit to be
identified (the second line in this example, indicating digit “1”).

[M × K] [K × N] [M × N]

M=10 classes

K nodes

N input vectors

Asynchronous readout
⋄ Sampling the reservoir is measuring each node.
⋄ Once the inputs are in, the time scale doesn’t matter!
⋄ We can adjust the time for readout (better performance)

Output data

Example of an imperfect “reservoir-computed” target
answer while testing the optimal read-out WRopt on
an untrained digit of response Mx. However, the digit
“2” clearly appears as the most obvious answer for
this untrained tested digit.

[M × K] [K × N] [M × N]

Interpreting output

Illustration of the decision procedure for the computed answer. The temporal amplitudes of
the actual target are summed over time for each line (or modality), i.e., for each of the 10
possible digits. The right modality is then declared as the one with the highest sum.

Results
Numerical and experimental results for the
parameter optimization with the TI46
database.

(a) The cos2 static nonlinear
transformation function and its scanned
portion in red, under the
best operating points close to a minimum
or a maximum.

(b) WER vs β parameter, under
synchronous write-in and
read-out, i.e., δτ/δτR. The red line is the
numerics; the blue
line is experimental (best: 1.3%).

(c) WER as a function of the relative readout vs write-in asynchrony quantified as ε=δτR/δτ−1.
(d) WER vs the β parameter, under asynchronous write-in and read-out. The red line is the numerics; the blue line is
experimental (best: 0.04%).

WER = word error rate

My Python simulation

is really slow

My Python simulation
...uses The MNIST database of
handwritten digits, which are
28×28 pixels grey scale.

Training set: 500

Testing set: 20

Great statistics :)

http://yann.lecun.com/exdb/mnis
t/

My Python simulation - result

My Python simulation - result
First column: yellow square is the right answer
Second column: result (the sum of each row)
Third column: separator between samples

Yellow are correct, green are wrong

My Python simulation - does it do anything?
This shouldn’t really work:
⋄ No optimized parameters (β, ρ, Φ0, dτR)
⋄ Run in python
⋄ Trained on 150 samples

This is less good than with the dynamics. It’s useful!

What happens if we eliminate the reservoir?
Transform the inputs and directly apply optimized
output matrix

My Python simulation - improvements

I’ll post the code on github. You can look at it, run it overnight, or make improvements
⋄ It’s really easy to parallelize over samples
⋄ It uses a slow integrator
⋄ It wasn’t optimized for anything

Thanks!
● Layered neural networks are functions; recurrent neural networks are dynamic systems
● A recurrent neural network can be represented in the time domain of a single nonlinear system
● This can be implemented with lasers for really fast processing
● The lasers can be simulated in python really slowly
● But the paper’s authors have real simulations to optimize parameters and check performance

