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Introduction

e Hungry rat experiment, Yale, 1948

@ Modeling reinforcement: agend-based model

Agent m(als)
r(s,a,s’) a
Environment
s
p(s'ls,a)

@ s: state; a: action; r: reward

@ p(s'|s,a): transitional probability; r(s, a, s’): reward model; 7 (als):
policy

@ This is a dynamical process: S, G, T't; St1, Qg1 Tegd; -
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https://www.youtube.com/watch?v=nMzBpgsIMUE

Examples: Atari games

Agent m(als)
r(s,a,s’) a
Environment
s
p(s'ls, a)

Atari games

@ State: brick positions, board positions, ball coordinate and velocity
e Action: controller/keyboard inputs

o Reward: game score
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Agent m(als)
r(s,a,s’) a
Environment
s
p(s's,a)

e State: positions of stones

o Action: next move

o Reward: advantage evaluation
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Agent m(als)
r(s,a,s’) a
Environment
s
p(s']s,a)

(Boston Dynamics)

@ State: positions, mass distribution, ...

o Action: adjusting forces on feet

o Reward: chance of falling
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Other examples

e Example in physics?
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Objective of reinforcement learning

Agent  [mal®)
@ Si, ag
e p(s'ls,a): transitional probability r(s,a ) ¢
r(s,a,s’): reward model Environment
7(als): policy s
p(s'ls, a)

Objective of reinforcement learning

Find optimal policy 7*(aly) to maximize expected reward:

> vtr(t)]

m*(a|s) = argmax E[V] = argmax E
T t=0

(v: 0 <+ < 1, discount factor)
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Simplest example: one-armed bandits

States Actions

e Optimal policy:
7*(0/0) =0, 7*(1]0) =1 J
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Markov decision process

Agent m(als)
r(s,a,s’) a
Environment
s
p(s'ls,a)

Suppose that I have full knowledge of p(s'|a, s),7(s, a, s').

This is called Markov Decision Process.
Objective of MDP: compute

7 (als) = argmax E[V] = argmax E [Z 'ytr(t)]

o This is a computing problem. No learning.
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Quality function Q(s,a)

o m*(als) = argmax, E[V] = argmax, E[> 2 ~v'r(t)]
@ Define

Q(Sa CL) = ETI’*

> Ar(t)
t=0

Given the initial state s and the initial action a, @) is the
maximum expected future reward.

SOZS,CLOZCL]

@ Recursive relationship:

Q(s0) = 3o s0s) + 7y max Q')

=Ey [r(sas') + ymax Q(s'a’)
a/
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Bellman equation

Q(sa) = Ey [r(sas') +ymax Q(s'a’)

e Solve Q(sa) (or ¥(s)) by Bellman equation, and the optimal policy
is given by (when ¢ — 0):

*( ‘ ) L, a*(s) = argiax, Q(a7 8)
m*(als) =
0 , otherwise.

e “Curse of dimensionality”
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@ Solve Bellman equation: iterative method

Qiv1(sa) = Ey |r(sas’) + 7y max Qi(s'd") sa]
= B[Qi]
e Start with Qo, and update by Q;+1 = B[Q;].

e Can prove the convergence by calculating the Jacobian of B near
the fixed point.

Problem: only update one entry (one (s,a) pair) at each iteration;
converges too slow.

)
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Statistical mechanics of MDP

St, At p(3/|87 a)a T(Sa a, 3/)7 W(G‘S)

Find 7*(a|s) = argmax, E[V] = argmax, E[Y ;% v'r(t)]

Define py(s): probability in state s at time ¢

Chapman—Kolmogorov equation:

Pr41(s Zp |sa)m(als)pu(s)
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Ve =Ex R Z’y Zpt (s'|sa)r(sas’)

sas’

(Let n(s Z v pe(s), average residence time in s before death)

= 3 ) (als)p(s'|sa)r(s'as)

s'as

e Constraints:
- n(s) depends on T

n(s') = po(s’ +'72p '|sa)m(als)n(s)

-, m(als) =1

- introduce Lagrange multipliers
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- Z)\(s) [Z m(als) — 1]

e Optimization: M‘zf‘s) =0, 52](2) =0.

e Problem: linear function — derivative is constant — extreme
value on the boundary — Optimal policy is deterministic (0 or 1)

@ Introduce non-linearity: entropy

Hy[r] = =) n(als)logm(als)

a

(Similar to regularization.)
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Frp=) n(s)m (s'[sa)r(s'as)  (Vay)

s'as

—Z¢(S’)[n( — po(s ’YZP (s'lsa)m(als)n(s)

Sl

(dynamlcal constraint)

— Z A(s) [Z m(als) — 1] (normalization)

Te Z n(s)Hs|r] (entropy)

oF 0 oF =0.

° om(als) — 7 on(s)
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o 1*(als) = % - Boltzmann distribution!

@ ¢: temperature!

e (: quality function - (minus) energy!

= Zp(s”sa) (sas’) + yelog (Z exp Q(Sea ))]

=Ey [r(sas’) + 7 softmax Q(s'a')]

(e—>0) =E, [(sas)—i—’ymax@(sa)]

o Can show that

= Bz~ Z 'Ytr(t)

S0 = S,aQ0 :a]
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e ¢(x): value function - (minus) free energy!

#(s) = clog [Z exp(iczms))]
= sofg?a;(l Q(as)
(€=0) =maxQ(as)
o Iterative equation:
6(s) = softmax {Ey [r(sas') +76(s')] }
(€= 0) =max {Ey [r(sas) +16(s")] }

Physical meaning of ¢(s): maximum expected future reward, given initial J
state s.
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Spectrum of reinforcement learning problems

Accuracy of observation y

Model-free Markov decision

reinforcement
learning process (MDP)

Full RL Partially Obs§rvable
markov decision

(very hard) process (POMDP)

Knowledge about environment p(s’as), r(as)
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MDP Bellman equation (¢ > 0)

Q(s,a) = Ey |r(sas’) + 7softmax Q(s'a")

i

Reinforcement learning: don’t know r(s,a,s’), p(s|s,a), only have
samples of (so,ag, s1;70), (S1,a1,52;72), vy (Sty Aty St41571), -

Rewrite Bellman equation:

IEsamples of (:|sa) (7’(8, a, ) + 'YSOftmaXQ('a a,) - Q(S, a)) =0
a’;e
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RL algorithm: soft Q-learning

° Qt+1(57a) =
Qi(s,a) — oy (rt+1 + 7y softmaxas;e Qi (se+1,a") — Qe(st, at)>6s,st6a,at
(Update if s = s4,a = ay; otherwise, Qy1(s,a) = Qq(s,a))

R . exp(@t+1(87a)/5)
o 7i1(als) = >y exp(Qri1(s,b)/e)

Problem: only update one entry (one (s, a) pair) at each iteration;
converges too slow.
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e Solution: parameterize Q(s,a) by Q(s,a;w), and update w in each
iteration.

o Parameterize function with a small number of parameters: neural
network.

@ Deep reinforcement learning:

@ RMnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J.,
Bellemare, M. G., ... & Petersen, S. (2015). Human-level control
through deep reinforcement learning. Nature, 518(7540), 529.
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Mathematical foundation: stochastic root finding problem

Given f(x) and f'(z) > 0, find £ s.t. f(§) =0

But, one doesn’t have access to f: for each x, one can sample from a
random variable ®(z), and E[®(z)] = f(x).

(Robbins, Monro, 1951)

Bad idea: for each x, sample 1000 times — calculate f(z) almost
exactly — find root.

e Good idea: sample less at far places, sample more near root.
Algorithm:

xo : starting point; obtain a sample ¢g(zg)

Tntl = Tn — andn(zn) (én(zy): obtained sample)

Can prove the convergence x,, — &, if Z]Oil aj = 00, Z;’il ajz < o0
(and some conditions on f and ¢).
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Discussion

o Neural implementation?

@ Physics application?
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Spring College on the (CTP
Physics of Complex
Systems

@ 2018 Spring College on the Physics of Complex Systems (ICTP
Trieste Italy)

@ Reinforcement Learning course by Antonio Celani

o Lectures and notes available at ICTP YouTube channel and
Spring College website.
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https://www.youtube.com/watch?v=gmCZzEVs5dc&list=PLRwcSE2bmyBxsUP3FQdhP3J3Ema9vAxQB
http://indico.ictp.it/event/8299
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