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Percolation!

A Game for all ages

Ryan Levy
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* Percolation — Union/Find

* Hoshen—Kopelman Algorithm

* Newman-Ziff Algorithm L
Instructions:
Union(C,K)
Union(F,E)
Union(A,J)
)

Union(D, I)
Union(L,F)
Union(C,A)
Union(A,B)
Union(H,G)
Union(H,F)<=
Union(H,B)

(This exa oes not use path compression)



Introduction

* Consider a lattice (or graph)
with binary options of
occupied or not

* Percolation — Is there a cluster p=0.9

that spans the entire system?
ol
* Question of the day F

— determine when there’s
always a percolating cluster




Introduction

* Consider a lattice (or graph)
with binary options of
occupied or not

* Percolation — Is there a cluster p=0.9
that spans the entire system? ¥

* Question of the day
— determine when there’s
always a percolating cluster

p=0.4 p=0.1



Examples in the world (!)

« Oil fields
* Forest Fires

* Spread of Diseases

i
* Wire Meshes Normal - Cancer
* Baking of cookies Percolation transition
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Extra Cool Stuff ™

- @oen Phase transition!

* When you're at the critical point the clusters are scale
invariant

* Critical exponents are measurable
* Universal behavior for other models

* Numerics needed to determine critical point for
many lattices

* Things we won’t talk about:
* There’s lots of non—numeric work (e.g. dual lattices)
* Scaling collapse / RG / critical exponents
* Mapping problems to percolation problems
* Other percolations
« Continuum
* Bond*
* Random Graphs

% percolation
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How to check for percolation?

Cluster Labeling

* Hoshen—Kopelman Algorithm (union/find)
* Initialize
* Anarray to hold labels for each site
* Count for max label
« Array/dict to convert between labels and proper labels
* Algorithm:
* For each site on the lattice:
1. Check if any neighbors are labeled, if not assign new label (label=maxLabel++)
2. Else, if all neighbors have the same label assign it to the current site
3. Else, determine the proper label for the site

a) If you aren’t lazy, update all proper labels to point to the “root”
(lam)



How to check for percolation?

Cluster Labeling

* Hoshen—Kopelman Algorithm (union/find)
* Initialize
* An array to hold labels for each site
* Count for max label
* Array/dict to convert between labels and proper labels
* Algorithm:
* For each site on the lattice:
1. Checkif any neighbors are labeled, if not assign new label (label=maxLabel++)
2. Else, if all neighbors have the same label assign it to the current site - Find
3. Else, determine the proper label for the site — Union+Find

a) If you aren’t lazy, update all proper labels to point to the “root”
(lam)



How to check for percolation?
Example - Labeling

T

* neighborlabels= [2,3]
* Label =min(neighborLables)
=2
« properlabel[2] =2 ‘
properlLabel[3] = 2

0060




How to check for percolation?
Example - Checking




Code break!




Percolation Transition
Naive Approach

* For a given probability of site occupation, generate a random lattice
* Determine if percolating
* Repeat, record percentage of percolations

* Increase system size, use finite size scaling techniques to determine
transition

- Exact p_c=05927

04 y Note: p_has many
more digits...

% percolation




Percolation Transition
Naive Approach

* Why is this not the best?
« Imagine we have many labels pointing to another (cluster merges)
¢ 10->6->4->2
« Determining the true label takes a lot of time
* (But this has an easy fix)

* The current implementation, one lattice gives one sample for a given p, can
we do better?

The current fastest algorithm for percolation
was published in 2000 by Mark Newman and Robert Ziff.['}




printf(
'

A fast Monte Carlo algorithm for site or bond percolation

M. E. J. Newman' and R. M. Ziff®
*Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501
% Michigan. Center for Theoretical Physics and Department of Chemical Engineering,
University of Michigan, Ann Arbor, MI 48109

algorithm time in seconds
depth-first search 4500000
H unweighted relabeling 16000
% weighted relabeling X
g tree-based algorithm 29 05455
5
2 - )
g_ TABLE 1. Time in seconds for a single run of each of the
2 algorithms discussed in this paper, for bond percolation on a
H square lattice of 1000 x 1000 sites.
H
size of system N "
ot oo e (In actual fact, if one measures the performance
ptrir2] = r1; FIG. 5. Total number of steps taken through trees dur- of the algorithm in real (“wallclock”) time, it will
ing a single run of the our algorithm as a function of system . .
trirllbig) big = -ptrirl] size. Each point is averaged over 1000 runs. Statistical errors on most computers (circa 2001) not be precisely
are much smaller than the data points. The solid line is y N
straight-line fit to the last five points, and gives a slope of linear in system size because of the increasing
1,006 £ 0011 incidence of cache misses as N becomes large.

This however is a hardware failing, rather than a
problem with the algorithm.)”



A fast Monte Carlo algorithm for site or bond percolation

M. E. J. Newman' and R. M. Ziff?
1Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501
2 Michigan Center for Theoretical Physics and Department of Chemical Engineering,
University of Michigan, Ann Arbor, MI 48109

* Find
« Store labels as a tree; find reports the ultimate root of the tree
« As paths are traversed, reduce depth as root is found (path compression)
* Recursion is your friend here
* Roots keep track of cluster size
* Union
* When adding a cluster, add the smaller one as a subtree of the larger
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A fast Monte Carlo algorithm for site or bond percolation

M. E. J. Newman' and R. M. Ziff®
1 Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501
2 Michigan Center for Theorelical Physics and Department of Chemical Engineering,
University of Michigan, Ann Arbor, MI 48109

Path Compression

Subtree Union



e Find

A fast Monte Carlo algorithm for site or bond percolation

M. E. J. Newman' and R. M. Ziff?
1Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501
2 Michigan Center for Theoretical Physics and Department of Chemsical Engineering,
University of Michigan, Ann. Arbor, MI 48109

« Store labels as a tree; find reports the ultimate root of the tree
* As paths are traversed, reduce depth as root is found (path compression)

* Recursion is your friend here

* Roots keep track of cluster size

* Union
* When adding a cluster, add the smaller one as a subtree of the larger

* Algorithm:

1.
2.
3.

Randomly occupy sites

Occupied sites are clusters of size 1

Go through each occupied site and check which clusters its connected to,
updating the tree



Newman-Ziff Algorithm

Subtle Improvement

* Instead of randomly filling a lattice and determining a label, randomly
order what sites will be occupied
* As you label clusters, you also calculate percolation percentage for a smaller p
on the way
* If all you care about is percolation, stop once you find a percolating cluster
(potentially saves time)
* We keep track of the size of each cluster for free



Newman-Ziff Algorithm — Code Break!

Subtle Improvement

2504 --- Exact p_c=0.5927
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1000x1000 time: >>2.9 seconds in python

Took 400 “samples”

Exact p_c=0.5927
L=16

L=32

L=64

L=128




Thanks for listening!

Questions?
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