An Abridged Guide to P, NP and
Some Things In Between
Nicholas LaRacuente

3 ES
Ay
5 Ty

PN = AP

N
N S

AP =SE =P =1 = AP

NP = xP coNP

A sample of what’s out there...

PSPACE - polynomial writeable memory

#P — counting solutions to polynomial or NP problems
Co-NP - confirming that an NP problem has no solution
NP Hard — at least as hard as anything in NP

NP Complete — NPH & NP

FNP — polynomial time to find a particular answer, such as the
minimum time solution for a traveling salesman

NP — polynomial time for a non-deterministic Turing machine /
checkable in polynomial time

BQP - polynomial time for a quantum computer
NP Intermediate — in NP, but not NP Complete
P — polynomial time

NL — logarithmic writeable memory for a non-deterministic
Turing machine

Rough

Order

Of Suspected
Difficulty

_~

Church-Turing Thesis: Robust
Complexity Classes

« Asymptotic scaling Is invariant to changes In
classical computer architecture.

* Quantum computers, non-deterministic
machines & oracles may change the rules.

See: Boson Sampling, Relativising Proofs

By HorsePunchKid - O
Egﬁjzgzggsmf&‘&w'k'm) ndex.php? https://en.wikipedia.org/wiki/Laptop#/media/File:Aluminium_MacBook.png By MaltaGC - Own work, CC BY-SA 3.0,

https://commons.wikimedia.org/w/index.php?curid=4629274

Common Points of Confusion

4 PSPACE problems)

NP Hard vs. NP (1=) o ~
NP problems

* BOP vs. NP (probably =)

—— o ————
- —_—
- _—

-

* FNP vs. NP < =1

(apples & oranges) _ R 7 y

Image by User Mike1024 - Drawn by User:Mike1024This vector image
was created with Inkscape., Public Domain,
https://commons.wikimedia.org/w/index.php?curid=1676927

NP-Hard

113 proofs (and counting)
that P=NP, PI=NP, and the
guestion Is undecidable.

https://www.win.tue.nl/~gwoegi/P-versus-NP.htm

NP-Complete

P=NP=

NP-Complete

P = NP

Image by Behnam Esfahbod, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=3532181

https://www.win.tue.nl/~gwoegi/P-versus-NP.htm

Why/How NP?

Non-deterministic Turing Machine — a computer
program that may take all paths for each
execution branch, decide after full execution
which to keep.

May use execution branches to write down all of
the exponentially many possible certificates, or
checkable solutions to an NP problem, check in P
time, then select them.

Equivalently, lucky machine always guesses well.
These are EXP time to simulate directly.

Traveling Salesman: Famously NPC

Brute Force Algorithm

100

80+

G0m

40+

20t

100

Branch & Bound Algorithm

gl

G0m

40

20

0 : : : : 0

100

H a0k

60m

40+

20}

100

80

G0m

40

20

0 20 40 60 80 100 0 20

How to Solve?
Basic: brute force

Smart: “branch & bound” or
dynamic programming — prune
obviously bad pieces of solutions
to reduce search space

Heuristic: “Modern methods can
find solutions for extremely large

problems (millions of cities) within
a reasonable time which are with
a high probability just 2—3% away
from the optimal solution.”

40

0 . . . L 0
60 80 100 0 20 40 60 80 100 0 20 40 60 &0

Ant Colony Heuristic

Animations by Saurabh.harsh - Own work, CC BY-SA 3.0,
https://en.wikipedia.org/wiki/Travelling_salesman_problem

Quote from Wikipedia.

100

https://en.wikipedia.org/wiki/Travelling_salesman_problem

Integer Factors: Probably Not NPC!

* Glven an n-bit integer x, find the factorization.

» Agrawal-Kayal-Saxena primality test: deciding
quther X |S pnme |S |n PI doi:10.4007/annals.2004.160.781

» Shor’s algorithm: factoring is in BQP

* Note that this problem has a single correct
certificate — most NPC probs are ambiguous,
especially w/ a fixed “good enough” criterion.

0) {] — A=
S . :

o -] R
0)] —A=
1) —A— U’ HUua? U —

By Bender2k14 - Own work. Created in LaTeX using Q-circuit. Source code below., CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=34319883

https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.4007%2Fannals.2004.160.781

Why/How NP Complete?
An Case of Reduction

1) Take a given problem in NP.

2) Write down rules for a non-deterministic Turing
machine / computer program that solves lit.

3) Convert the rules into a bounded tiling problem,
one of the 1st known NP-Complete problems.

4) Anything that converts from bounded tiling Is
therefore also NPC. (NPC = NP & NPH)

General: Any NP problem converts in P time to
any NPC problem. NPC = NP unless P = NP.

What Is Bounded Tiling?

* Given: a set of 4-tuples of symbols, representing kinds of tiles.
A unary-specified number, the size of a square grid to tile.

* Rules: Each pair of adjacent tiles must have the same symbol
on their adjacent edges.

 Use: Let the X dimension of a grid be memory, and Y be time.
Then we convert the set of transitions defined by a computer
program (Turing Machine) into tile types.

3 Total system state -

=
usy.b 3 R (%) |complete configuration (aka f
1 PR i "instantaneous description”)
Sequence i Head Instruction: A B C H TAPE & TABLE &HEAD
afo[ofafo[o]o[o[o[o[o] o[o] 0] O]
1 A [[ofo[o[o[o[o]o[q[o[o[o]o[o]ofo] A AQ
2 B |[o[o[o[o[o[o[o]q[1[o[o]o[o[0[0] [B] BO1 d b
3 A [o[o[o[o[o[o[1[1[o[o[0[[0][0[0] [A] 1A1
4 ¢ [[o[o[o[olo[1[[o[o[o[o[o[o[0[0] 11C0
5 B [o[oJo[o[1]1[1]o[0[o[o][0[o[0]0 B 111B0
6 A [o[olo[T[1[1[1]o[o[o[ofo[o[o]o] = [A] 1111A0
7 B [o[o[o[o[1[1[1[[1[o[o[0[o[0[0 B 111B11 a
8 B [o[o[o[o[o[1[1[1[1[1[o[0[0[0]0 B 11B111
9 B [o[o[o[o[o[o[1][1[1[1[0[o[0]0 B 1B1111
10 B [o[o[o[o[o[o[o]A[1[1]1[1]o[0]0 B B11111
1 B [o[o[o[o[o[o[o]o[T[1[1[1[1[0[0 B B0O11111 a a
12 A [ofo[o[ofo[o[1[a[1]1[1]1[o]o[0] [Al 1A11111
13 ¢ [o[o[o[o[o[1[1[4[[1[1[0[o]0[0] 11C1111
14 H__[o[o[o[o[o[1[1[1[1[1[1[0[o[0]0 % 11H1111
Progress of the computation (state-trajectory) of a 3-state busy beaver b b b b
By Wvbailey at the English language Wikipedia, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=45094484 C C

Boolean Satisfiability (SAT)

(XVXVY) A (AXVayVAay) A (AXVYVY)

» 1st known NPC problem

 CNF (conjuctive normal
form) is a conjunction of
disjunctions of vars and
negations

 Any SAT Instance
red u CeS tO a.n ﬁy Th/(/)re Husfeldt i{_ Eng[ish V\//iki/peél:iia, ChCEY-S(ﬁS.O,
eqUIsatISflable CN F F:: l::):ons'w' imedia.org/w/index.php?curid=31943944
an dlor 3 - C N F I n P tl m e https://en.wikipedia.org/wiki/Conjunctive_normal_form

The 3-SAT instance reduced to a clique problem. The green
vertices form a 3-clique and correspond to the satisfying
assignment x=FALSE, y=TRUE.

https://commons.wikimedia.org/w/index.php?curid=31943944

Cook’s Theorem: Tiling to SAT

 Construct a SAT Iinstance with a variable for each
possible tile for each grid square.

* Add boolean constraints such that only 1 var Is true
for any grid square. We interpret this var as selecting
a corresponding tile.

» Add boolean constraints to enforce adjacent tiles’
same-symbol constraint.

» Solutions now correspond to tilings!
 May use auxiliary vars to convert SAT to 3SCNF.

CNF Classification (Boolean Blocks)

(Now moving beyond the basic part of the presentation)

 Assume that we have available some boolean
constructs: conjunction, disjunction, negation,
implication, constants, etc.

 What can we make by applying & substituting
constructs from this set? Some boolean
functions may combine to generate others.

e Answer...

Post’s Lattice

Post’s Lattice

!ﬁ P'
i.w’&vw} e
¢.'/"‘«VV =X/

R

N -

=
[a W

constants

disjunction

)
O
-
-
 —
-
®
Q@
@
@
O
'
|

e UPO/UP1

° VP -

AP — conjunction

o T

e T5°1s the smallest
class that is NPC!

Galois Connection

e Q: If the boolean functions we can create are
restricted, what does that say about the sets of
possible solutions?

* A: We can define var-wise polymorphisms that,
given 0-3 complete solutions, generate another
satisfying solution If the lattice class is sufficiently
restrictive.

The existence of non-unary polymorphisms
iImplies that the boolean formulae Iin that lattice
class are always solvable in P.

Non-unary Polymorphisms

 The Constant 0/1 — trivially satisfiable by the
solution that is all 1s or Os

* The binary V/A - these are Horn/antiHorn CNF
formulae, in which each clause contains only
one positive/negated literal. It Is possible to find
a minimal/maximal solution in P time.

* The operation majority(x,y,z) — corresponds to
2SAT, which is NL Complete (and in P).

* The operations minority(X,y,z) — equivalent to
xor, which allows linear algebraic solution.

Schaefer’s Dichotomy Theorem

* |If a CNF has a non-unary polymorphism, it's P
If not, it's NP Complete.

 Why? Go back to post’s lattice. Take out all the classes

that satisfy any non-unary polymorphism (and anything
that’'s not a CNF). What we’'re left with are the CNF
classes that contain 7.

SO0 CNFs are either P or NPH! We also now have a
programmatic way to decide this!

Consequences

» Difference between P and NPC for CNF
formulae Is an algebraic structure.

 There are no NP CNF formulae that are not
either also in P or in NPH. Probably no BQP.

« 2CNF/3CNF distinction is especially poighant —
1 more var in clause goes from P to NPC.

Sources & Further Reading

* “A Rendevouz of Logic, Complexity and
Algebra.” Hubie Chen. 2006

* “Playing With Boolean Blocks...” Bohler,
Creignou, Reith & Vollmer. 2003.

Further topics (not covered today)...
 Geometric Complexity Theory

» “Statistical mechanics methods and phase
transitions in optimization problems,” Martin,
Monasson & Zecchina

