

An Abridged Guide to P, NP and
Some Things in Between

Nicholas LaRacuente

Image by “Self”, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=14535539

A sample of what’s out there...

● PSPACE – polynomial writeable memory
● #P – counting solutions to polynomial or NP problems
● Co-NP – confirming that an NP problem has no solution
● NP Hard – at least as hard as anything in NP
● NP Complete – NPH & NP
● FNP – polynomial time to find a particular answer, such as the

minimum time solution for a traveling salesman
● NP – polynomial time for a non-deterministic Turing machine /

checkable in polynomial time
● BQP – polynomial time for a quantum computer
● NP Intermediate – in NP, but not NP Complete
● P – polynomial time
● NL – logarithmic writeable memory for a non-deterministic

Turing machine

Rough
Order
Of Suspected
Difficulty

Church-Turing Thesis: Robust
Complexity Classes

● Asymptotic scaling is invariant to changes in
classical computer architecture.

● Quantum computers, non-deterministic
machines & oracles may change the rules.

See: Boson Sampling, Relativising Proofs

By HorsePunchKid - Own work, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?
curid=9976340

https://en.wikipedia.org/wiki/Laptop#/media/File:Aluminium_MacBook.png By MaltaGC - Own work, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=4629274

Common Points of Confusion

● NP Hard vs. NP (!=)
● BQP vs. NP (probably !=)
● FNP vs. NP

(apples & oranges)

113 proofs (and counting)
that P=NP, P!=NP, and the
question is undecidable.

Image by Behnam Esfahbod, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=3532181

Image by User Mike1024 - Drawn by User:Mike1024This vector image
was created with Inkscape., Public Domain,
https://commons.wikimedia.org/w/index.php?curid=1676927

C
o
m

p
le

x
it

y

P ≠ NP P = NP

NP-Hard

NP-Complete

P

NP

NP-Hard

P = NP =
NP-Complete

https://www.win.tue.nl/~gwoegi/P-versus-NP.htm

https://www.win.tue.nl/~gwoegi/P-versus-NP.htm

Why/How NP?

● Non-deterministic Turing Machine – a computer
program that may take all paths for each
execution branch, decide after full execution
which to keep.

● May use execution branches to write down all of
the exponentially many possible certificates, or
checkable solutions to an NP problem, check in P
time, then select them.

● Equivalently, lucky machine always guesses well.
● These are EXP time to simulate directly.

Traveling Salesman: Famously NPC

Animations by Saurabh.harsh - Own work, CC BY-SA 3.0,
https://en.wikipedia.org/wiki/Travelling_salesman_problem

Quote from Wikipedia.

Ant Colony Heuristic

Brute Force Algorithm Branch & Bound Algorithm

How to Solve?

Basic: brute force

Smart: “branch & bound” or
dynamic programming – prune
obviously bad pieces of solutions
to reduce search space

Heuristic: “Modern methods can
find solutions for extremely large
problems (millions of cities) within
a reasonable time which are with
a high probability just 2–3% away
from the optimal solution.”

https://en.wikipedia.org/wiki/Travelling_salesman_problem

Integer Factors: Probably Not NPC!

● Given an n-bit integer x, find the factorization.
● Agrawal–Kayal–Saxena primality test: deciding

whether x is prime is in P!
● Shor’s algorithm: factoring is in BQP
● Note that this problem has a single correct

certificate – most NPC probs are ambiguous,
especially w/ a fixed “good enough” criterion.

By Bender2k14 - Own work. Created in LaTeX using Q-circuit. Source code below., CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=34319883

doi:10.4007/annals.2004.160.781

https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.4007%2Fannals.2004.160.781

Why/How NP Complete?
An Case of Reduction

1) Take a given problem in NP.

2) Write down rules for a non-deterministic Turing
machine / computer program that solves it.

3) Convert the rules into a bounded tiling problem,
one of the 1st known NP-Complete problems.

4) Anything that converts from bounded tiling is
therefore also NPC. (NPC = NP & NPH)

General: Any NP problem converts in P time to
any NPC problem. NPC != NP unless P = NP.

What is Bounded Tiling?

● Given: a set of 4-tuples of symbols, representing kinds of tiles.
A unary-specified number, the size of a square grid to tile.

● Rules: Each pair of adjacent tiles must have the same symbol
on their adjacent edges.

● Use: Let the X dimension of a grid be memory, and Y be time.
Then we convert the set of transitions defined by a computer
program (Turing Machine) into tile types.

a

c

bb

a

c

bb

f

a

bd

By Wvbailey at the English language Wikipedia, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=45094484

Boolean Satisfiability (SAT)

● 1st known NPC problem
● CNF (conjuctive normal

form) is a conjunction of
disjunctions of vars and
negations

● Any SAT instance
reduces to an
equisatisfiable CNF
and/or 3-CNF in P time

By Thore Husfeldt at English Wikipedia, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=31943944

Formula from
https://en.wikipedia.org/wiki/Conjunctive_normal_form

The 3-SAT instance reduced to a clique problem. The green
vertices form a 3-clique and correspond to the satisfying
assignment x=FALSE, y=TRUE.

~x ~y ~y

x

y

x

y

~x

y

(x x y) (¬x ¬y ¬y) (¬x y y)∨ ∨ ∧ ∨ ∨ ∧ ∨ ∨

https://commons.wikimedia.org/w/index.php?curid=31943944

Cook’s Theorem: Tiling to SAT

● Construct a SAT instance with a variable for each
possible tile for each grid square.

● Add boolean constraints such that only 1 var is true
for any grid square. We interpret this var as selecting
a corresponding tile.

● Add boolean constraints to enforce adjacent tiles’
same-symbol constraint.

● Solutions now correspond to tilings!
● May use auxiliary vars to convert SAT to 3CNF.

CNF Classification (Boolean Blocks)

● Assume that we have available some boolean
constructs: conjunction, disjunction, negation,
implication, constants, etc.

● What can we make by applying & substituting
constructs from this set? Some boolean
functions may combine to generate others.

● Answer...

(Now moving beyond the basic part of the presentation)

Post’s Lattice

By EmilJ - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=3506643

Post’s Lattice

● UP0/UP1 – constants
● VP - disjunction
● ∧P – conjunction
● …
● T – all boolean funcs

● Is the smallest
class that is NPC!

By EmilJ - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=3506643

Galois Connection

● Q: if the boolean functions we can create are
restricted, what does that say about the sets of
possible solutions?

● A: We can define var-wise polymorphisms that,
given 0-3 complete solutions, generate another
satisfying solution if the lattice class is sufficiently
restrictive.

The existence of non-unary polymorphisms
implies that the boolean formulae in that lattice
class are always solvable in P.

Non-unary Polymorphisms

● The Constant 0/1 – trivially satisfiable by the
solution that is all 1s or 0s

● The binary V/ - these are Horn/antiHorn CNF ∧
formulae, in which each clause contains only
one positive/negated literal. It is possible to find
a minimal/maximal solution in P time.

● The operation majority(x,y,z) – corresponds to
2SAT, which is NL Complete (and in P).

● The operations minority(x,y,z) – equivalent to
xor, which allows linear algebraic solution.

Schaefer’s Dichotomy Theorem

● If a CNF has a non-unary polymorphism, it’s P

If not, it’s NP Complete.

● Why? Go back to post’s lattice. Take out all the classes
that satisfy any non-unary polymorphism (and anything
that’s not a CNF). What we’re left with are the CNF
classes that contain .

● So CNFs are either P or NPH! We also now have a
programmatic way to decide this!

Consequences

● Difference between P and NPC for CNF
formulae is an algebraic structure.

● There are no NP CNF formulae that are not
either also in P or in NPH. Probably no BQP.

● 2CNF/3CNF distinction is especially poignant –
1 more var in clause goes from P to NPC.
C

o
m

p
le

x
it

y

P ≠ NP P = NP

NP-Hard

NP-Complete

P

NP

NP-Hard

P = NP =
NP-Complete

Image by Behnam Esfahbod, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=3532181

Sources & Further Reading

● “A Rendevouz of Logic, Complexity and
Algebra.” Hubie Chen. 2006

● “Playing With Boolean Blocks...” Bohler,
Creignou, Reith & Vollmer. 2003.

Further topics (not covered today)…
● Geometric Complexity Theory
● “Statistical mechanics methods and phase

transitions in optimization problems,” Martin,
Monasson & Zecchina

